16 research outputs found
Bioconversion of D-galacturonate to keto-deoxy-L-galactonate (3-deoxy-L-threo-hex-2-ulosonate) using filamentous fungi
<p>Abstract</p> <p>Background</p> <p>The D-galacturonic acid derived from plant pectin can be converted into a variety of other chemicals which have potential use as chelators, clarifiers, preservatives and plastic precursors. Among these is the deoxy-keto acid derived from L-galactonic acid, keto-deoxy-L-galactonic acid or 3-deoxy-L-<it>threo</it>-hex-2-ulosonic acid. The keto-deoxy sugars have been found to be useful precursors for producing further derivatives. Keto-deoxy-L-galactonate is a natural intermediate in the fungal D-galacturonate metabolic pathway, and thus keto-deoxy-L-galactonate can be produced in a simple biological conversion.</p> <p>Results</p> <p>Keto-deoxy-L-galactonate (3-deoxy-L-<it>threo</it>-hex-2-ulosonate) accumulated in the culture supernatant when <it>Trichoderma reesei </it>Δ<it>lga1 </it>and <it>Aspergillus niger </it>Δ<it>gaaC </it>were grown in the presence of D-galacturonate. Keto-deoxy-L-galactonate accumulated even if no metabolisable carbon source was present in the culture supernatant, but was enhanced when D-xylose was provided as a carbon and energy source. Up to 10.5 g keto-deoxy-L-galactonate l<sup>-1 </sup>was produced from 20 g D-galacturonate l<sup>-1 </sup>and <it>A. niger </it>Δ<it>gaaC </it>produced 15.0 g keto-deoxy-L-galactonate l<sup>-1 </sup>from 20 g polygalacturonate l<sup>-1</sup>, at yields of 0.4 to 1.0 g keto-deoxy-L-galactonate [g D-galacturonate consumed]<sup>-1</sup>. Keto-deoxy-L-galactonate accumulated to concentrations of 12 to 16 g l<sup>-1 </sup>intracellularly in both producing organisms. This intracellular concentration was sustained throughout production in <it>A. niger </it>Δ<it>gaaC</it>, but decreased in <it>T. reesei</it>.</p> <p>Conclusions</p> <p>Bioconversion of D-galacturonate to keto-deoxy-L-galactonate was achieved with both <it>A. niger </it>Δ<it>gaaC </it>and <it>T. reesei </it>Δ<it>lga1</it>, although production (titre, volumetric and specific rates) was better with <it>A. niger </it>than <it>T. reesei</it>. <it>A. niger </it>was also able to produce keto-deoxy-L-galactonate directly from pectin or polygalacturonate demonstrating the feasibility of simultaneous hydrolysis and bioconversion. Although keto-deoxy-L-galactonate accumulated intracellularly, concentrations above ~12 g l<sup>-1 </sup>were exported to the culture supernatant. Lysis may have contributed to the release of keto-deoxy-L-galactonate from <it>T. reesei </it>mycelia.</p
Tomographic Separation of Composite Spectra. IX. The Massive Close Binary HD 115071
We present the first orbital elements for the massive close binary, HD
115071, a double-lined spectroscopic binary in a circular orbit with a period
of 2.73135 +/- 0.00003 days. The orbital semiamplitudes indicate a mass ratio
of M_2/M_1 = 0.58 +/- 0.02 and yet the stars have similar luminosities. We used
a Doppler tomography algorithm to reconstruct the individual component optical
spectra, and we applied well known criteria to arrive at classifications of
O9.5 V and B0.2 III for the primary and secondary, respectively. We present
models of the Hipparcos light curve of the ellipsoidal variations caused by the
tidal distortion of the secondary, and the best fit model for a Roche-filling
secondary occurs for an inclination of i = 48.7 +/- 2.1 degrees. The resulting
masses are 11.6 +/- 1.1 and 6.7 +/- 0.7 solar masses for the primary and
secondary, respectively, so that both stars are very overluminous for their
mass. The system is one of only a few known semi-detached, Algol-type binaries
that contain O-stars. We suggest that the binary has recently emerged from
extensive mass transfer (possibly through a delayed contact and common envelope
process).Comment: Submitted to Ap
Perspectives on fatigue in short-haul flight operations from US pilots: A focus group study
There are few studies investigating the impact of fatigue in short-haul flight operations conducted under United States (US) 14 Code of Federal Regulations Part 117 flight and duty limitations and rest requirements. In order to understand the fatigue factors unique to short-haul operations, we conducted a series of focus groups across four major commercial passenger airlines in the US. Ninety short-haul pilots were recruited through emails distributed by airline safety teams and labor representatives. Fourteen focus groups were conducted via an online conferencing platform in which participants were asked to identify short-haul schedules and operations that they felt: a) elevated fatigue, b) were not fatiguing, and c) were important to study. Data were collected anonymously and coded using conventional qualitative content analysis, with axial coding and summative analysis used to identify main themes and over-arching categories. The six fatigue factor categories identified were: circadian disruption, high workload, inadequate rest opportunity, schedule changes, regulation implementation and policy issues, and long sits. It appears that additional mitigation strategies may be needed to manage fatigue in short-haul operations beyond the current regulations. Future field studies of short-haul operations in the US should investigate the prevalence and impact of these factors
Secretion of Genome-Free Hepatitis B Virus – Single Strand Blocking Model for Virion Morphogenesis of Para-retrovirus
As a para-retrovirus, hepatitis B virus (HBV) is an enveloped virus with a double-stranded (DS) DNA genome that is replicated by reverse transcription of an RNA intermediate, the pregenomic RNA or pgRNA. HBV assembly begins with the formation of an “immature” nucleocapsid (NC) incorporating pgRNA, which is converted via reverse transcription within the maturing NC to the DS DNA genome. Only the mature, DS DNA-containing NCs are enveloped and secreted as virions whereas immature NCs containing RNA or single-stranded (SS) DNA are not enveloped. The current model for selective virion morphogenesis postulates that accumulation of DS DNA within the NC induces a “maturation signal” that, in turn, triggers its envelopment and secretion. However, we have found, by careful quantification of viral DNA and NCs in HBV virions secreted in vitro and in vivo, that the vast majority of HBV virions (over 90%) contained no DNA at all, indicating that NCs with no genome were enveloped and secreted as empty virions (i.e., enveloped NCs with no DNA). Furthermore, viral mutants bearing mutations precluding any DNA synthesis secreted exclusively empty virions. Thus, viral DNA synthesis is not required for HBV virion morphogenesis. On the other hand, NCs containing RNA or SS DNA were excluded from virion formation. The secretion of DS DNA-containing as well as empty virions on one hand, and the lack of secretion of virions containing single-stranded (SS) DNA or RNA on the other, prompted us to propose an alternative, “Single Strand Blocking” model to explain selective HBV morphogenesis whereby SS nucleic acid within the NC negatively regulates NC envelopment, which is relieved upon second strand DNA synthesis
Robust stability of melatonin circadian phase, sleep metrics, and chronotype across months in young adults living in real‐world settings
Appropriate synchronization of the timing of behaviors with the circadian clock and adequate sleep are both important for almost every physiological process. The timing of the circadian clock relative to social (ie, local) clock time and the timing of sleep can vary greatly among individuals. Whether the timing of these processes is stable within an individual is not well-understood. We examined the stability of circadian-controlled melatonin timing, sleep timing, and their interaction across ~ 100 days in 15 students at a single university. At three time points ~ 35-days apart, circadian timing was determined from the dim-light melatonin onset (DLMO). Sleep behaviors (timing and duration) and chronotype (ie, mid-sleep time on free days corrected for sleep loss on school/work days) were determined via actigraphy and analyzed in ~ 1-month bins. Melatonin timing was stable, with an almost perfect relationship strength as determined via intraclass correlation coefficients ([ICC]=0.85); average DLMO timing across all participants only changed from the first month by 21 minutes in month 2 and 5 minutes in month 3. Sleep behaviors also demonstrated high stability, with ICC relationship strengths ranging from substantial to almost perfect (ICCs = 0.65-0.85). Average DLMO was significantly associated with average chronotype (r = 0.53, P <.01), with chronotype displaying substantial stability across months (ICC = 0.61). These findings of a robust stability in melatonin timing and sleep behaviors in young adults living in real-world settings holds promise for a better understanding of the reliability of previous cross-sectional reports and for the future individualized strategies to combat circadian-associated disease and impaired safety (ie, “chronomedicine”).
Evasion of cGAS and TRIM5 defines pandemic HIV
Of the 13 known independent zoonoses of simian immunodeficiency viruses to humans, only one, leading to human immunodeficiency virus (HIV) type 1(M) has become pandemic, causing over 80 million human infections. To understand the specific features associated with pandemic human-to-human HIV spread, we compared replication of HIV-1(M) with non-pandemic HIV-(O) and HIV-2 strains in myeloid cell models. We found that non-pandemic HIV lineages replicate less well than HIV-1(M) owing to activation of cGAS and TRIM5-mediated antiviral responses. We applied phylogenetic and X-ray crystallography structural analyses to identify differences between pandemic and non-pandemic HIV capsids. We found that genetic reversal of two specific amino acid adaptations in HIV-1(M) enables activation of TRIM5, cGAS and innate immune responses. We propose a model in which the parental lineage of pandemic HIV-1(M) evolved a capsid that prevents cGAS and TRIM5 triggering, thereby allowing silent replication in myeloid cells. We hypothesize that this capsid adaptation promotes human-to-human spread through avoidance of innate immune response activation