4 research outputs found

    Additional file 4: of Diverse laboratory colonies of Aedes aegypti harbor the same adult midgut bacterial microbiome

    No full text
    Table S1. Identification of bacterial genera that are differentially abundant in pairwise comparisons of colonies. P-values were obtained with a Wald test are corrected for multiple testing. The lack of a comparison between two colonies indicates that no bacterial genera were significantly different between them. (XLSX 15 kb

    Additional file 3: of Diverse laboratory colonies of Aedes aegypti harbor the same adult midgut bacterial microbiome

    No full text
    Figure S3. OTU-independent analysis of midgut bacterial community structure confirms the lack of clustering by colony. The heat map of Bray-Curtis dissimilarity index based on k-mer abundance and hierarchical clustering shows that the sequences are structured based on the sequencing run and the day of DNA extraction, not the laboratory colony of origin. Sample names are color coded by colony and labeled according to the DNA extraction batch (a and b) and the sequencing run (* and +). In the heat map, red color indicates high similarity, whereas green color indicates low similarity. (PNG 476 kb

    Additional file 2: of Diverse laboratory colonies of Aedes aegypti harbor the same adult midgut bacterial microbiome

    No full text
    Figure S2. The midgut bacterial communities are highly structured by sequencing run. The cluster dendrogram of individual midgut samples based on a Bray-Curtis dissimilarity matrix shows that sequencing run, and not the identity of the mosquito colony, determines bacterial community relatedness. Midgut samples are represented by numbers color coded by sequencing run. Dark blue samples were sequenced in the first run, whereas light blue samples were sequenced in the second run. (PNG 2300 kb
    corecore