62 research outputs found

    Group theoretical approach to pairing and non-linear phenomena in atomic nuclei

    Get PDF
    The symplectic sp(4) algebra provides a natural framework for studying proton-neutron (pn) and like-nucleon pairing correlations as well as higher-J pn interactions in nuclei when protons and neutrons occupy the same shell. While these correlations manifest themselves most clearly in the binding energies of 0+ ground states, they also have a large effect on the spectra of excited isobaric analog 0+ states. With a view towards nuclear structure applications, a fermion realization of sp(4) is explored and its q-deformed extension, sp(4)q, is constructed for single and multiple shells. The su(2)(q) substructures that enter are associated with isospin symmetry and with identical-particle and pn pairing. We suggest a non-deformed as well as a q-deformed algebraic descriptions of pairing for even-A nuclei of the mass 32 \u3c A \u3c 164 region. A Hamiltonian with a symplectic dynamical symmetry is constructed and its eigenvalues are fit to the relevant Coulomb corrected experimental 0+ state energies in both the “classical” and “deformed” cases. While the non-deformed microscopic theory yields results that are comparable to other models for light nuclei, the present approach succeeds in providing a reasonable estimate for interaction strength parameters as well as a detailed investigation of isovector pairing, symmetry energy and symmetry breaking effects. It also reproduces the relevant ground and excited 0+ state energies and predicts some that are not yet measured. The model successfully interprets fine features driven by pairing correlations and higher-J nuclear interactions. In a classification scheme that is inherent to the sp(4) algebraic approach, a finite energy difference technique is used to investigate two-particle separation energies, irregularities found around the N = Z region, and like-particle and pn isovector pairing gaps. The analysis identifies a prominent staggering behavior between groups of even-even and odd-odd nuclides that is due to discontinuities in the pairing and symmetry terms. While the “classical” limit of the theory provides good overall results, the analysis also shows that q-deformation can be used to gain a better understanding of higher-order effects in the interaction within each individual nucleus

    Nuclear dynamics and reactions in the ab initio symmetry-adapted framework

    Get PDF
    We review the ab initio symmetry-adapted (SA) framework for determining the structure of stable and unstable nuclei, along with related electroweak, decay, and reaction processes. This framework utilizes the dominant symmetry of nuclear dynamics, the shape-related symplectic Sp(3, R) symmetry, which has been shown to emerge from first principles and to expose dominant degrees of freedom that are collective in nature, even in the lightest species or seemingly spherical states. This feature is illustrated for a broad scope of nuclei ranging from helium to titanium isotopes, enabled by recent developments of the ab initio SA no-core shell model expanded to the continuum through the use of the SA basis and that of the resonating group method. The review focuses on energies, electromagnetic transitions, quadrupole and magnetic moments, radii, form factors, and response function moments for ground-state rotational bands and giant resonances. The method also determines the structure of reaction fragments that is used to calculate decay widths and α-capture reactions for simulated X-ray burst abundance patterns, as well as nucleon–nucleus interactions for cross sections and other reaction observables

    The Heine-Stieltjes correspondence and the polynomial approach to the Gaudin-Richardson models

    Get PDF
    The Heine-Stieltjes correspondence is extended and applied to solve Bethe ansatz equations of the Gaudin-Richardson models, from which the extended Heine-Stieltjes polynomial approach to these models is proposed. As examples for the application of this approach, exact solutions of the standard two-site Bose-Hubbard model and the standard pairing model for nuclei are formulated from the corresponding polynomials. © Published under licence by IOP Publishing Ltd

    Hoyle state and rotational features in Carbon-12 within a no-core shell model framework

    Full text link
    By using only a fraction of the model space extended beyond current no-core shell-model limits and a schematic effective many-nucleon interaction, we gain additional insight within a symmetry-guided shell-model framework, into the many-body dynamics that gives rise to the ground state rotational band together with phenomena tied to alpha-clustering substructures in the low-lying states in C-12, and in particular, the challenging Hoyle state and its first 2+ excitation. For these states, we offer a novel perspective emerging out of no-core shell-model considerations, including a discussion of associated nuclear shapes and matter radii. This, in turn, provides guidance for ab initio shell models by informing key features of nuclear structure and the interaction.Comment: 5 pages, 4 figure

    Symmetries and canonical transformations in nuclei

    Get PDF
    We begin with a brief historical overview of the importance of special symmetries in atomic nuclei, especially the symplectic symmetry. We then show how deforming the symplectic algebra through canonical transformations that are unitary can be used to describe the same physics that in a non-deformed picture requires huge model spaces in far smaller deformed spaces, a simplification that should proportionally reduce the complexity of using the symplectic symmetry in applications. The overarching objective is to exploit this strategy to probe more deeply into the (ab initio) structure of nuclei, short cutting a need to await the development of evermore robust computational resources for carrying out advanced microscopic nuclear structure investigations

    Similarity renormalization group and many-body effects in multiparticle systems

    Get PDF
    The similarity renormalization group (SRG), based on the simple one-body free harmonic oscillator Hamiltonian, is applied to various nucleon-nucleon realistic interactions to investigate the unitarity of the SRG transformations. Two-body and three-body contributions to the SRG-evolved Hamiltonian are studied in the framework of spectral distribution theory for reasonable SRG cutoffs and in multiparticle systems, with up through 28 particles considered. The outcome points to the first evidence for the overall importance of three-body SRG-induced interactions and especially, of its two-body effective content in multinucleon systems, without the need for large-scale shell model calculations for many light to heavier nuclei. © 2012 American Physical Society

    Symmetry-guided large-scale shell-model theory

    Get PDF
    In this review, we present a symmetry-guided strategy that utilizes exact as well as partial symmetries for enabling a deeper understanding of and advancing ab initio studies for determining the microscopic structure of atomic nuclei. These symmetries expose physically relevant degrees of freedom that, for large-scale calculations with QCD-inspired interactions, allow the model space size to be reduced through a very structured selection of the basis states to physically relevant subspaces. This can guide explorations of simple patterns in nuclei and how they emerge from first principles, as well as extensions of the theory beyond current limitations toward heavier nuclei and larger model spaces. This is illustrated for the ab initio symmetry-adapted no-core shell model (SA-NCSM) and two significant underlying symmetries, the symplectic Sp(3,R) group and its deformation-related SU(3) subgroup. We review the broad scope of nuclei, where these symmetries have been found to play a key role - from the light p-shell systems, such as 6Li, 8B, 8Be, 12C, and 16O, and sd-shell nuclei exemplified by 20Ne, based on first-principle explorations; through the Hoyle state in 12C and enhanced collectivity in intermediate-mass nuclei, within a no-core shell-model perspective; up to strongly deformed species of the rare-earth and actinide regions, as investigated in earlier studies. A complementary picture, driven by symmetries dual to Sp(3,R), is also discussed. We briefly review symmetry-guided techniques that prove useful in various nuclear-theory models, such as Elliott model, ab initio SA-NCSM, symplectic model, pseudo-SU(3) and pseudo-symplectic models, ab initio hyperspherical harmonics method, ab initio lattice effective field theory, exact pairing-plus-shell model approaches, and cluster models, including the resonating-group method. Important implications of these approaches that have deepened our understanding of emergent phenomena in nuclei, such as enhanced collectivity, giant resonances, pairing, halo, and clustering, are discussed, with a focus on emergent patterns in the framework of the ab initio SA-NCSM with no a priori assumptions

    Overlaps of deformed and non-deformed harmonic oscillator basis states

    Get PDF
    A systematic approach for expanding non-deformed harmonic oscillator basis states in terms of deformed ones, and vice versa, is presented. The objective is to provide analytical results for calculating these overlaps (transformation brackets) between deformed and non-deformed basis states in spherical, cylindrical, and Cartesian coordinates. These overlaps can be used for reducing the complexity of different research problems that employ three-dimensional harmonic oscillator basis states, for example as used in coherent state theory and the nuclear shell-model, especially within the context of ab initio symmetry-adapted no-core shell model

    Accelerating many-nucleon basis generation for high performance computing enabled ab initio nuclear structure studies

    Get PDF
    We present the problem of generating a many-nucleon basis in SU(3) -scheme for ab initio nuclear structure calculations in a symmetry-adapted no-core shell model framework. We first discuss and analyze the basis construction algorithm whose baseline implementation quickly becomes a significant bottleneck for large model spaces and heavier nuclei. The outcomes of this analysis are utilized to propose a new scalable version of the algorithm. Its performance is consequently studied empirically using the Blue Waters supercomputer. The measurements show significant acceleration achieved with over two orders of magnitude speedups realized for larger model spaces
    • …
    corecore