17 research outputs found
Optimal acquisition scheme for flow-compensated intravoxel incoherent motion diffusion-weighted imaging in the abdomen: An accurate and precise clinically feasible protocol.
Purpose Flow-compensated (FC) diffusion-weighted MRI (DWI) for intravoxel-incoherent motion (IVIM) modeling allows for a more detailed description of tissue microvasculature than conventional IVIM. The long acquisition time of current FC-IVIM protocols, however, has prohibited clinical application. Therefore, we developed an optimized abdominal FC-IVIM acquisition with a clinically feasible scan time.Methods Precision and accuracy of the FC-IVIM parameters were assessed by fitting the FC-IVIM model to signal decay curves, simulated for different acquisition schemes. Diffusion-weighted acquisitions were added subsequently to the protocol, where we chose the combination of b-value, diffusion time and gradient profile (FC or bipolar) that resulted in the largest improvement to its accuracy and precision. The resulting two optimized FC-IVIM protocols with 25 and 50 acquisitions (FC-IVIMopt25 and FC-IVIMopt50 ), together with a complementary acquisition consisting of 50 diffusion-weighting (FC-IVIMcomp ), were acquired in repeated abdominal free-breathing FC-IVIM imaging of seven healthy volunteers. Intersession and intrasession within-subject coefficient of variation of the FC-IVIM parameters were compared for the liver, spleen, and kidneys.Results Simulations showed that the performance of FC-IVIM improved in tissue with larger perfusion fraction and signal-to-noise ratio. The scan time of the FC-IVIMopt25 and FC-IVIMopt50 protocols were 8 and 16 min. The best in vivo performance was seen in FC-IVIMopt50 . The intersession within-subject coefficients of variation of FC-IVIMopt50 were 11.6%, 16.3%, 65.5%, and 36.0% for FC-IVIM model parameters diffusivity, perfusion fraction, characteristic time and blood flow velocity, respectively.Conclusions We have optimized the FC-IVIM protocol, allowing for clinically feasible scan times (8-16 min)
Characterization of the diffusion coefficient of blood.
PURPOSE: To characterize the diffusion coefficient of human blood for accurate results in intravoxel incoherent motion imaging. METHODS: Diffusion-weighted MRI of blood samples from 10 healthy volunteers was acquired with a single-shot echo-planar-imaging sequence at body temperature. Effects of gradient profile (monopolar or flow-compensated), diffusion time (40-100 ms), and echo time (60-200 ms) were investigated. RESULTS: Although measured apparent diffusion coefficients of blood were larger for flow-compensated than for monopolar gradients, no dependence of the apparent diffusion coefficient on the diffusion time was found. Large differences between individual samples were observed, with results ranging from 1.26 to 1.66 µm2 /ms for flow-compensated and 0.94 to 1.52 µm2 /ms for monopolar gradients. Statistical analysis indicates correlations of the flow-compensated apparent diffusion coefficient with hematocrit (P = 0.007) and hemoglobin (P = 0.017), but not with mean corpuscular volume (P = 0.64). Results of Monte-Carlo simulations support the experimental observations. CONCLUSIONS: Measured blood apparent diffusion coefficient values depend on hematocrit/hemoglobin concentration and applied gradient profile due to non-Gaussian diffusion. Because in vivo measurement is delicate, an estimation based on blood count results could be an alternative. For intravoxel incoherent motion modeling, the use of a blood self-diffusion constant Db  = 1.54 ± 0.12 µm2 /ms for flow-compensated and Db  = 1.30 ± 0.18 µm2 /ms for monopolar encoding is suggested. Magn Reson Med 79:2752-2758, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited
Optimal acquisition scheme for flow-compensated intravoxel incoherent motion diffusion-weighted imaging in the abdomen: An accurate and precise clinically feasible protocol.
PURPOSE: Flow-compensated (FC) diffusion-weighted MRI (DWI) for intravoxel-incoherent motion (IVIM) modeling allows for a more detailed description of tissue microvasculature than conventional IVIM. The long acquisition time of current FC-IVIM protocols, however, has prohibited clinical application. Therefore, we developed an optimized abdominal FC-IVIM acquisition with a clinically feasible scan time. METHODS: Precision and accuracy of the FC-IVIM parameters were assessed by fitting the FC-IVIM model to signal decay curves, simulated for different acquisition schemes. Diffusion-weighted acquisitions were added subsequently to the protocol, where we chose the combination of b-value, diffusion time and gradient profile (FC or bipolar) that resulted in the largest improvement to its accuracy and precision. The resulting two optimized FC-IVIM protocols with 25 and 50 acquisitions (FC-IVIMopt25 and FC-IVIMopt50 ), together with a complementary acquisition consisting of 50 diffusion-weighting (FC-IVIMcomp ), were acquired in repeated abdominal free-breathing FC-IVIM imaging of seven healthy volunteers. Intersession and intrasession within-subject coefficient of variation of the FC-IVIM parameters were compared for the liver, spleen, and kidneys. RESULTS: Simulations showed that the performance of FC-IVIM improved in tissue with larger perfusion fraction and signal-to-noise ratio. The scan time of the FC-IVIMopt25 and FC-IVIMopt50 protocols were 8 and 16 min. The best in vivo performance was seen in FC-IVIMopt50 . The intersession within-subject coefficients of variation of FC-IVIMopt50 were 11.6%, 16.3%, 65.5%, and 36.0% for FC-IVIM model parameters diffusivity, perfusion fraction, characteristic time and blood flow velocity, respectively. CONCLUSIONS: We have optimized the FC-IVIM protocol, allowing for clinically feasible scan times (8-16 min)
An optimized b-value distribution for triexponential intravoxel incoherent motion (IVIM) in the liver.
Purpose To find an optimized b-value distribution for reproducible triexponential intravoxel incoherent motion (IVIM) exams in the liver.Methods A numeric optimization of b-value distributions was performed using the triexponential IVIM equation and 27 different IVIM parameter sets. Starting with an initially optimized distribution of 6 b-values, the number of b-values was increased stepwise. Each new b-value was chosen from a set of 64 predefined b-values based on the computed summed relative mean error of the fitted triexponential IVIM parameters. This process was repeated for up to 100 b-values. In simulations and in vivo measurements, optimized b-value distributions were compared to 4 representative distributions found in literature.Results The first 16 optimized b-values were 0, 0.3, 0.3, 70, 200, 800, 70, 1, 3.5, 5, 70, 1.2, 6, 45, 1.5, and 60 in units of s/mm2 . Low b-values were much more frequent than high b-values. The optimized b-value distribution resulted in a higher fit stability compared to distributions used in literature in both, simulation and in vivo measurements. Using more than 6 b-values, ideally 16 or more, increased the fit stability considerably.Conclusion Using optimized b-values, the fit uncertainty in triexponential IVIM can be largely reduced. Ideally, 16 or more b-values should be acquired
Echo time dependence of biexponential and triexponential intravoxel incoherent motion parameters in the liver.
PURPOSE: Intravoxel incoherent motion (IVIM) studies are performed with different acquisition protocols. Comparing them requires knowledge of echo time (TE) dependencies. The TE-dependence of the biexponential perfusion fraction f is well-documented, unlike that of its triexponential counterparts f1 and f2 and the biexponential and triexponential pseudodiffusion coefficients D* , D1∗ , and D2∗ . The purpose was to investigate the TE-dependence of these parameters and to check whether the triexponential pseudodiffusion compartments are associated with arterial and venous blood. METHODS: Fifteen healthy volunteers (19-58 y; mean: 24.7 y) underwent diffusion-weighted imaging of the abdomen with 24 b-values (0.2-800 s/mm2 ) at TEs of 45, 60, 75, and 90 ms. Regions of interest (ROIs) were manually drawn in the liver. One set of bi- and triexponential IVIM parameters per volunteer and TE was determined. The TE-dependence was assessed with the Kruskal-Wallis test. RESULTS: TE-dependence was observed for f (P < .001), f1 (P = .001), and f2 (P < .001). Their median values at the four measured TEs were: f: 0.198/0.240/0.274/0.359, f1 : 0.113/0.139/0.146/0.205, f2 : 0.115/0.155/0.182/0.194. D, D* , D1∗ , and D2∗ showed no significant TE-dependence. Their values were: diffusion coefficient D (10-4 mm2 /s): 9.45/9.63/9.75/9.41, biexponential D* (10-2 mm2 /s): 5.26/5.52/6.13/5.82, triexponential D1∗ (10-2 mm2 /s): 1.73/2.91/2.25/2.51, triexponential D2∗ (mm2 /s): 0.478/1.385/0.616/0.846. CONCLUSION: f1 and f2 show similar TE-dependence as f, ie, increase with rising TE; an effect that must be accounted for when comparing different studies. The diffusion and pseudodiffusion coefficients might be compared without TE correction. Because of the similar TE-dependence of f1 and f2 , the triexponential pseudodiffusion compartments are most probably not associated to venous and arterial blood
Enhancing pancreatic adenocarcinoma delineation in diffusion derived intravoxel incoherent motion f-maps through automatic vessel and duct segmentation
Diffusion-based intravoxel incoherent motion imaging has recently gained interest as a method to detect and characterize pancreatic lesions, especially as it could provide a radiation- and contrast agent-free alternative to existing diagnostic methods. However, tumor delineation on intravoxel incoherent motion-derived parameter maps is impeded by poor lesion-to-pancreatic duct contrast in the f-maps and poor lesion-to-vessel contrast in the D-maps. The distribution of the diffusion and perfusion parameters within vessels, ducts, and tumors were extracted from a group of 42 patients with pancreatic adenocarcinoma. Clearly separable combinations of f and D were observed, and receiver operating characteristic analysis was used to determine the optimal cutoff values for an automated segmentation of vessels and ducts to improve lesion detection and delineation on the individual intravoxel incoherent motion-derived maps. Receiver operating characteristic analysis identified f = 0.28 as the cutoff for vessels (Area under the curve (AUC) = 0.901) versus tumor/duct and D = 1.85 \u3bcm(2) /ms for separating duct from tumor tissue (AUC = 0.988). These values were incorporated in an automatic segmentation algorithm and then applied to 42 patients. This yielded clearly improved tumor delineation compared to individual intravoxel incoherent motion-derived maps. Furthermore, previous findings that indicated that the f value in pancreatic cancer is strongly reduced compared to healthy pancreatic tissue were reconfirmed. Magn Reson Med, 2011. \ua9 2011 Wiley-Liss, Inc