77 research outputs found

    Perspectives on quantum transduction

    Get PDF
    Quantum transduction, the process of converting quantum signals from one form of energy to another, is an important area of quantum science and technology. The present perspective article reviews quantum transduction between microwave and optical photons, an area that has recently seen a lot of activity and progress because of its relevance for connecting superconducting quantum processors over long distances, among other applications. Our review covers the leading approaches to achieving such transduction, with an emphasis on those based on atomic ensembles, opto-electro-mechanics, and electro-optics. We briefly discuss relevant metrics from the point of view of different applications, as well as challenges for the future

    Two-Fluid RANS-RSTM-PDF Model for Turbulent Particulate Flows

    Get PDF
    A novel three-dimensional (3D) model based on Reynolds turbulence stress model (RSTM) closure of equations of carrier and particulate phases was elaborated for channel turbulent flows. The essence of the model is the direct calculation of normal and shear components of the Reynolds stresses for the particulate phase similar to the carrier fluid. The model is based on the Eulerian approach, which is applied for the 3D RANS modeling of the carrier flow and the particulate phase and the statistical probability dense function (PDF) approach focusing on the mathematical description of the second moments of the particulate phase

    Perspectives on quantum transduction

    Get PDF
    Quantum transduction, the process of converting quantum signals from one form of energy to another, is an important area of quantum science and technology. The present perspective article reviews quantum transduction between microwave and optical photons, an area that has recently seen a lot of activity and progress because of its relevance for connecting superconducting quantum processors over long distances, among other applications. Our review covers the leading approaches to achieving such transduction, with an emphasis on those based on atomic ensembles, opto-electromechanics, and electro-optics. We briefly discuss relevant metrics from the point of view of different applications, as well as challenges for the future.Comment: 13 pages, 5 figure

    Renormalization Group Analysis of a Quivering String Model of Posture Control

    Full text link
    Scaling concepts and renormalization group (RG) methods are applied to a simple linear model of human posture control consisting of a trembling or quivering string subject to damping and restoring forces. The string is driven by uncorrelated white Gaussian noise intended to model the corrections of the physiological control system. We find that adding a weak quadratic nonlinearity to the posture control model opens up a rich and complicated phase space (representing the dynamics) with various non-trivial fixed points and basins of attraction. The transition from diffusive to saturated regimes of the linear model is understood as a crossover phenomenon, and the robustness of the linear model with respect to weak non-linearities is confirmed. Correlations in posture fluctuations are obtained in both the time and space domain. There is an attractive fixed point identified with falling. The scaling of the correlations in the front-back displacement, which can be measured in the laboratory, is predicted for both the large-separation (along the string) and long-time regimes of posture control.Comment: 20 pages, 13 figures, RevTeX, accepted for publication in PR

    Teleportation Systems Toward a Quantum Internet

    Get PDF
    Quantum teleportation is essential for many quantum information technologies, including long-distance quantum networks. Using fiber-coupled devices, including state-of-the-art low-noise superconducting nanowire single-photon detectors and off-the-shelf optics, we achieve conditional quantum teleportation of time-bin qubits at the telecommunication wavelength of 1536.5 nm. We measure teleportation fidelities of ≥90% that are consistent with an analytical model of our system, which includes realistic imperfections. To demonstrate the compatibility of our setup with deployed quantum networks, we teleport qubits over 22 km of single-mode fiber while transmitting qubits over an additional 22 km of fiber. Our systems, which are compatible with emerging solid-state quantum devices, provide a realistic foundation for a high-fidelity quantum Internet with practical devices

    Teleportation Systems Toward a Quantum Internet

    Get PDF
    Quantum teleportation is essential for many quantum information technologies, including long-distance quantum networks. Using fiber-coupled devices, including state-of-the-art low-noise superconducting nanowire single-photon detectors and off-the-shelf optics, we achieve conditional quantum teleportation of time-bin qubits at the telecommunication wavelength of 1536.5 nm. We measure teleportation fidelities of ≥90% that are consistent with an analytical model of our system, which includes realistic imperfections. To demonstrate the compatibility of our setup with deployed quantum networks, we teleport qubits over 22 km of single-mode fiber while transmitting qubits over an additional 22 km of fiber. Our systems, which are compatible with emerging solid-state quantum devices, provide a realistic foundation for a high-fidelity quantum Internet with practical devices

    Picosecond Synchronization of Photon Pairs through a Fiber Link between Fermilab and Argonne National Laboratories

    Full text link
    We demonstrate a three-node quantum network for C-band photon pairs using 2 pairs of 59 km of deployed fiber between Fermi and Argonne National Laboratories. The C-band pairs are directed to nodes using a standard telecommunication switch and synchronized to picosecond-scale timing resolution using a coexisting O- or L-band optical clock distribution system. We measure a reduction of coincidence-to-accidental ratio (CAR) of the C-band pairs from 51 ±\pm 2 to 5.3 ±\pm 0.4 due to Raman scattering of the O-band clock pulses. Despite this reduction, the CAR is nevertheless suitable for quantum networks

    Bioenergy production and sustainable development: science base for policymaking remains limited

    Get PDF
    The possibility of using bioenergy as a climate change mitigation measure has sparked a discussion of whether and how bioenergy production contributes to sustainable development. We undertook a systematic review of the scientific literature to illuminate this relationship and found a limited scientific basis for policymaking. Our results indicate that knowledge on the sustainable development impacts of bioenergy production is concentrated in a few well-studied countries, focuses on environmental and economic impacts, and mostly relates to dedicated agricultural biomass plantations. The scope and methodological approaches in studies differ widely and only a small share of the studies sufficiently reports on context and/or baseline conditions, which makes it difficult to get a general understanding of the attribution of impacts. Nevertheless, we identified regional patterns of positive or negative impacts for all categories – environmental, economic, institutional, social and technological. In general, economic and technological impacts were more frequently reported as positive, while social and environmental impacts were more frequently reported as negative (with the exception of impacts on direct substitution of GHG emission from fossil fuel). More focused and transparent research is needed to validate these patterns and develop a strong science underpinning for establishing policies and governance agreements that prevent/mitigate negative and promote positive impacts from bioenergy production

    Tacit collusion, firm asymmetries and numbers:evidence from EC merger cases

    Get PDF
    The purpose of this paper is to identify empirically the implicit structural model, especially the roles of size asymmetries and concentration, used by the European Commission to identify mergers with coordinated effects (i.e. collective dominance). Apart from its obvious policy-relevance, the paper is designed to shed empirical light on the conditions under which tacit collusion is most likely. We construct a database relating to 62 candidate mergers and find that, in the eyes of the Commission, tacit collusion in this context virtually never involves more than two firms and requires close symmetry in the market shares of the two firms
    • …
    corecore