20 research outputs found

    On the Impact of Texture and Grain Size on the Pseudoelastic Properties of Polycrystalline Fe–Ni–Co–Al–Ti Alloy

    Get PDF
    The effects of thermomechanical treatments on crystallographic texture and grain size evolution and their impact on the pseudoelastic properties in Fe41–Ni28–Co17–Al11.5–Ti2.5 (at.%) were studied in the present paper. The results show that cold rolling leads to brass-type texture in this alloy, which is typical for low stacking fault energy materials. Thermal treatments up to 1300 °C were conducted and it is shown that the presence of β-phase helps to control grain growth. After the dissolution of the secondary phase induced by heat treatment at higher temperatures, a strong {230}〈001〉 recrystallization texture evolves in cold rolled samples already upon imposing medium reduction ratios. Finally, good pseudoelastic properties are found in conditions being characterized by adequate texture and grain sizes spanning over the entire thickness of the samples tested.Fil: Sobrero, Cesar Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; ArgentinaFil: Lauhoff, C.. University of Kassel; AlemaniaFil: Wegener, T.. University of Kassel; AlemaniaFil: Niendorf, T.. University of Kassel; AlemaniaFil: Krooß, P.. University of Kassel; Alemani

    Additive Manufacturing of Binary Ni–Ti Shape Memory Alloys Using Electron Beam Powder Bed Fusion: Functional Reversibility Through Minor Alloy Modification and Carbide Formation

    Get PDF
    Shape memory alloys (SMAs), such as Ni–Ti, are promising candidates for actuation and damping applications. Although processing of Ni–Ti bulk materials is challenging, well-established processing routes (i.e. casting, forging, wire drawing, laser cutting) enabled application in several niche applications, e.g. in the medical sector. Additive manufacturing, also referred to as 4D-printing in this case, is known to be highly interesting for the fabrication of SMAs in order to produce near-net-shaped actuators and dampers. The present study investigated the impact of electron beam powder bed fusion (PBF-EB/M) on the functional properties of C-rich Ni50.9Ti49.1 alloy. The results revealed a significant loss of Ni during PBF-EB/M processing. Process microstructure property relationships are discussed in view of the applied master alloy and powder processing route, i.e. vacuum induction-melting inert gas atomization (VIGA). Relatively high amounts of TiC, being already present in the master alloy and powder feedstock, are finely dispersed in the matrix upon PBF-EB/M. This leads to a local change in the chemical composition (depletion of Ti) and a pronounced shift of the transformation temperatures. Despite the high TiC content, superelastic testing revealed a good shape recovery and, thus, a negligible degradation in both, the as-built and the heat-treated state

    γ-phase evolution in aged Co–Ni–Ga shape memory alloy

    No full text
    A synchrotron X-ray diffraction study of high-temperature (HT) shape memory alloy 49Co–21Ni–30Ga (in at. pct.) was performed. The volume fraction, cell parameter and temperature evolution of the different secondary phases were analyzed. This study reports reliable experimental data on these parameters to be used as a future reference to adjust the composition of the material

    Cyclic Superelastic Behavior of Iron-Based Fe-Ni-Co-Al-Ti-Nb Shape Memory Alloy

    No full text
    Iron-based shape memory alloys came into focus as promising candidate materials for large-scale structural applications owing to their cost-efficiency. In the present work, the superelastic properties of a recently introduced Fe-Ni-Co-Al-Ti-Nb shape memory alloy are investigated. For 〈001〉-oriented single-crystalline material in aged condition (650 °C/6 h), an incremental strain test reveals excellent superelasticity at −130 °C with fully reversible strains up to about 6%. Under cycling loading at different test temperatures, however, the alloy system investigated suffers limited functional stability.Fil: Lauhoff, C.. University of Kassel; AlemaniaFil: Remich, V.. University of Kassel; AlemaniaFil: Giordana, María Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; ArgentinaFil: Sobrero, Cesar Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; ArgentinaFil: Niendorf, T.. University of Kassel; AlemaniaFil: Krooß, P.. University of Kassel; Alemani

    Microstructure of an additively manufactured Ti-Ta-Al alloy using novel pre-alloyed powder feedstock material

    No full text
    Binary Ti-Ta and ternary Ti-Ta-Al alloys attracted considerable attention as new potential biomaterials and/or high-temperature shape memory alloys. However, conventional forming and manufacturing technologies of refractory based titanium alloys are difficult and cost-intensive, especially when complex shapes are required. Recently, additive manufacturing (AM) emerged as a suitable alternative and several studies exploited elemental powder mixing approaches to obtain a desired alloy and subsequently use it for complex shape manufacture. However, this approach has one major limitation associated with material inhomogeneities after fabrication. In present work, novel pre-alloyed powder material of a Ti-Ta-Al alloy was additively manufactured. Hereto, electron beam powder bed fusion (PBF-EB/M) technique was used for the first time to process such Ti-Ta based alloy system. Detailed microstructural analysis revealed that additively manufactured structures had a near full density and high chemical homogeneity. Thus, AM of pre-alloyed feedstock material offers great potential to overcome major roadblocks, even when significant differences in the melting points and densities of the constituents are present as proven in the present case study. The homogeneous microstructure allows to apply short-term thermal post treatments. The highly efficient process chain detailed will open up novel application fields for Ti-Ta based alloys

    Microstructure of an additively manufactured Ti-Ta-Al alloy using novel pre-alloyed powder feedstock material

    No full text
    Binary Ti-Ta and ternary Ti-Ta-Al alloys attracted considerable attention as new potential biomaterials and/or high-temperature shape memory alloys. However, conventional forming and manufacturing technologies of refractory based titanium alloys are difficult and cost-intensive, especially when complex shapes are required. Recently, additive manufacturing (AM) emerged as a suitable alternative and several studies exploited elemental powder mixing approaches to obtain a desired alloy and subsequently use it for complex shape manufacture. However, this approach has one major limitation associated with material inhomogeneities after fabrication. In present work, novel pre-alloyed powder material of a Ti-Ta-Al alloy was additively manufactured. Hereto, electron beam powder bed fusion (PBF-EB/M) technique was used for the first time to process such Ti-Ta based alloy system. Detailed microstructural analysis revealed that additively manufactured structures had a near full density and high chemical homogeneity. Thus, AM of pre-alloyed feedstock material offers great potential to overcome major roadblocks, even when significant differences in the melting points and densities of the constituents are present as proven in the present case study. The homogeneous microstructure allows to apply short-term thermal post treatments. The highly efficient process chain detailed will open up novel application fields for Ti-Ta based alloys

    Impact of Heating–Cooling Rates on the Functional Properties of Ti–20Ta–5Al High-Temperature Shape Memory Alloys

    No full text
    Due to their ability to provide a shape memory effect at elevated temperatures, high-temperature shape memory alloys (HT-SMAs) came into focus of academia and industry in the last decades. Ternary and quaternary Ni–Ti-based HT-SMAs have been in focus of a large number of studies so far. Ti–Ta HT-SMAs feature attractive shape memory properties along with significantly higher ductility and lower costs for alloying elements compared to conventional Ni–Ti-based HT-SMAs, which qualifies them as promising candidate alloys for high-temperature applications. Unfortunately, precipitation of undesired phases, e.g., the ω-phase, leads to significant functional degradation upon cyclic loading in binary Ti–Ta. Therefore, additions of ternary elements, such as Al, which suppress the ω-phase formation, are important. In the present study, the influence of different heating–cooling rates on the cyclic functional properties of a Ti–20Ta–5Al HT-SMA is investigated. Transmission electron microscopy as well as in situ synchrotron analysis revealed unexpected degradation mechanisms in the novel alloy studied. Elementary microstructural mechanisms leading to a degradation of the functional properties were identified, and the ramifications with respect to application of Ti–Ta–Al HT-SMAs are discussed
    corecore