554 research outputs found

    Trials on the drag of a streamlined body and its towing cable

    No full text

    Dynamical replica theoretic analysis of CDMA detection dynamics

    Full text link
    We investigate the detection dynamics of the Gibbs sampler for code-division multiple access (CDMA) multiuser detection. Our approach is based upon dynamical replica theory which allows an analytic approximation to the dynamics. We use this tool to investigate the basins of attraction when phase coexistence occurs and examine its efficacy via comparison with Monte Carlo simulations.Comment: 18 pages, 2 figure

    Order-Parameter Flow in the SK Spin-Glass II: Inclusion of Microscopic Memory Effects

    Full text link
    We develop further a recent dynamical replica theory to describe the dynamics of the Sherrington-Kirkpatrick spin-glass in terms of closed evolution equations for macroscopic order parameters. We show how microscopic memory effects can be included in the formalism through the introduction of a dynamic order parameter function: the joint spin-field distribution. The resulting formalism describes very accurately the relaxation phenomena observed in numerical simulations, including the typical overall slowing down of the flow that was missed by the previous simple two-parameter theory. The advanced dynamical replica theory is either exact or a very good approximation.Comment: same as original, but this one is TeXabl

    Finite Size Effects in Separable Recurrent Neural Networks

    Full text link
    We perform a systematic analytical study of finite size effects in separable recurrent neural network models with sequential dynamics, away from saturation. We find two types of finite size effects: thermal fluctuations, and disorder-induced `frozen' corrections to the mean-field laws. The finite size effects are described by equations that correspond to a time-dependent Ornstein-Uhlenbeck process. We show how the theory can be used to understand and quantify various finite size phenomena in recurrent neural networks, with and without detailed balance.Comment: 24 pages LaTex, with 4 postscript figures include

    Poly(triazolyl methacrylate) glycopolymers as potential targeted unimolecular nanocarriers

    Get PDF
    © The Royal Society of Chemistry 2019.Synthetic glycopolymers are increasingly investigated as multivalent ligands for a range of biological and biomedical applications. This study indicates that glycopolymers with a fine-tuned balance between hydrophilic sugar pendant units and relatively hydrophobic polymer backbones can act as single-chain targeted nanocarriers for low molecular weight hydrophobic molecules. Non-covalent complexes formed from poly(triazolyl methacrylate) glycopolymers and low molecular weight hydrophobic guest molecules were characterised through a range of analytical techniques-DLS, SLS, TDA, fluorescence spectroscopy, surface tension analysis-and molecular dynamics (MD) modelling simulations provided further information on the macromolecular characteristics of these single chain complexes. Finally, we show that these nanocarriers can be utilised to deliver a hydrophobic guest molecule, Nile red, to both soluble and surface-immobilised concanavalin A (Con A) and peanut agglutinin (PNA) model lectins with high specificity, showing the potential of non-covalent complexation with specific glycopolymers in targeted guest-molecule delivery.Peer reviewedFinal Published versio

    Dynamical Replica Theory for Disordered Spin Systems

    Full text link
    We present a new method to solve the dynamics of disordered spin systems on finite time-scales. It involves a closed driven diffusion equation for the joint spin-field distribution, with time-dependent coefficients described by a dynamical replica theory which, in the case of detailed balance, incorporates equilibrium replica theory as a stationary state. The theory is exact in various limits. We apply our theory to both the symmetric- and the non-symmetric Sherrington-Kirkpatrick spin-glass, and show that it describes the (numerical) experiments very well.Comment: 7 pages RevTex, 4 figures, for PR

    Symmetric sequence processing in a recurrent neural network model with a synchronous dynamics

    Full text link
    The synchronous dynamics and the stationary states of a recurrent attractor neural network model with competing synapses between symmetric sequence processing and Hebbian pattern reconstruction is studied in this work allowing for the presence of a self-interaction for each unit. Phase diagrams of stationary states are obtained exhibiting phases of retrieval, symmetric and period-two cyclic states as well as correlated and frozen-in states, in the absence of noise. The frozen-in states are destabilised by synaptic noise and well separated regions of correlated and cyclic states are obtained. Excitatory or inhibitory self-interactions yield enlarged phases of fixed-point or cyclic behaviour.Comment: Accepted for publication in Journal of Physics A: Mathematical and Theoretica

    Relaxation and Metastability in the RandomWalkSAT search procedure

    Full text link
    An analysis of the average properties of a local search resolution procedure for the satisfaction of random Boolean constraints is presented. Depending on the ratio alpha of constraints per variable, resolution takes a time T_res growing linearly (T_res \sim tau(alpha) N, alpha < alpha_d) or exponentially (T_res \sim exp(N zeta(alpha)), alpha > alpha_d) with the size N of the instance. The relaxation time tau(alpha) in the linear phase is calculated through a systematic expansion scheme based on a quantum formulation of the evolution operator. For alpha > alpha_d, the system is trapped in some metastable state, and resolution occurs from escape from this state through crossing of a large barrier. An annealed calculation of the height zeta(alpha) of this barrier is proposed. The polynomial/exponentiel cross-over alpha_d is not related to the onset of clustering among solutions.Comment: 23 pages, 11 figures. A mistake in sec. IV.B has been correcte
    • …
    corecore