3,753 research outputs found

    Experimental determination of dipole moments for molecular ions: Improved measurements for ArH^+

    Get PDF
    An improved value for the dipole moment of ArH^+ has been obtained from new measurements of the rotational g factors of ArH^+ and ArD^+ made with tunable far‐IR laser spectroscopy. Systematic errors present in earlier measurements have been eliminated. The new result (μ=3.0±0.6 D) is slightly higher than the ab initio value of Rosmus (2.2 D) at the 2σ limits of precision

    Hierarchy wave functions--from conformal correlators to Tao-Thouless states

    Full text link
    Laughlin's wave functions, describing the fractional quantum Hall effect at filling factors ν=1/(2k+1)\nu=1/(2k+1), can be obtained as correlation functions in conformal field theory, and recently this construction was extended to Jain's composite fermion wave functions at filling factors ν=n/(2kn+1)\nu=n/(2kn+1). Here we generalize this latter construction and present ground state wave functions for all quantum Hall hierarchy states that are obtained by successive condensation of quasielectrons (as opposed to quasiholes) in the original hierarchy construction. By considering these wave functions on a cylinder, we show that they approach the exact ground states, the Tao-Thouless states, when the cylinder becomes thin. We also present wave functions for the multi-hole states, make the connection to Wen's general classification of abelian quantum Hall fluids, and discuss whether the fractional statistics of the quasiparticles can be analytically determined. Finally we discuss to what extent our wave functions can be described in the language of composite fermions.Comment: 9 page

    Topological Quantum Phase Transitions in Topological Superconductors

    Full text link
    In this paper we show that BF topological superconductors (insulators) exibit phase transitions between different topologically ordered phases characterized by different ground state degeneracy on manifold with non-trivial topology. These phase transitions are induced by the condensation (or lack of) of topological defects. We concentrate on the (2+1)-dimensional case where the BF model reduce to a mixed Chern-Simons term and we show that the superconducting phase has a ground state degeneracy kk and not k2k^2. When the symmetry is U(1)×U(1)U(1) \times U(1), namely when both gauge fields are compact, this model is not equivalent to the sum of two Chern-Simons term with opposite chirality, even if naively diagonalizable. This is due to the fact that U(1) symmetry requires an ultraviolet regularization that make the diagonalization impossible. This can be clearly seen using a lattice regularization, where the gauge fields become angular variables. Moreover we will show that the phase in which both gauge fields are compact is not allowed dynamically.Comment: 5 pages, no figure

    Pairing via Index theorem

    Full text link
    This work is motivated by a specific point of view: at short distances and high energies the undoped and underdoped cuprates resemble the π\pi-flux phase of the t-J model. The purpose of this paper is to present a mechanism by which pairing grows out of the doped π\pi-flux phase. According to this mechanism pairing symmetry is determined by a parameter controlling the quantum tunneling of gauge flux quanta. For zero tunneling the symmetry is dx2y2+idxyd_{x^2-y^2}+id_{xy}, while for large tunneling it is dx2y2d_{x^2-y^2}. A zero-temperature critical point separates these two limits

    Mottness: Identifying the Propagating Charge Modes in doped Mott Insulators

    Full text link
    High-temperature superconductivity in the copper-oxide ceramics remains an unsolved problem because we do not know what the propagating degrees of freedom are in the normal state. As a result, we do not know what are the weakly interacting degrees of freedom which pair up to form the superconducting condensate. That the electrons are not the propagating degrees of freedom in the cuprates is seen most directly from experiments that show spectral weight redistributions over all energy scales. Of course, the actual propagating degrees of freedom minimize such spectral rearrangements. This review focuses on the range of epxerimental consequences such UV-IR mixings have on the normal state of the cuprates, such as the pseudogap, mid-infrared band, temperature dependence of the Hall number, the superfluid density, and a recent theoretical advance which permits the identification of the weakly interacting degrees of freedom in a doped Mott insulator. Within this theory, we show how the wide range of phenomena which typify the normal state of the cuprates arises including TT-linear resistivity.Comment: To appear as a Colloquium in the April issue of Rev. Mod. Phys Updated version contains new references and a clarification concerning Fig. 8

    First Results from the Transit Ephemeris Refinement and Monitoring Survey (TERMS)

    Get PDF
    Transiting planet discoveries have yielded a plethora of information towards understanding the structure and atmospheres of extra-solar planets. These discoveries have been restricted to the short-period or low-periastron distance regimes due to the bias inherent in the geometric transit probability. Through the refinement of planetary orbital parmaters, and hence reducing the size of transit windows, long-period planets become feasible targets for photometric follow-up. Here we describe the TERMS project which is monitoring these host stars at predicted transit times

    Mesoscale simulations of surfactant dissolution and mesophase formation

    Get PDF
    The evolution of the contact zone between pure surfactant and solvent has been studied by mesoscale simulation. It is found that mesophase formation becomes diffusion controlled and follows the equilibrium phase diagram adiabatically almost as soon as individual mesophases can be identified, corresponding to times in real systems of order 10 microseconds.Comment: 4 pages, 2 figures, ReVTeX
    corecore