3,753 research outputs found
Experimental determination of dipole moments for molecular ions: Improved measurements for ArH^+
An improved value for the dipole moment of ArH^+ has been obtained from new measurements of the rotational g factors of ArH^+ and ArD^+ made with tunable far‐IR laser spectroscopy. Systematic errors present in earlier measurements have been eliminated. The new result (μ=3.0±0.6 D) is slightly higher than the ab initio value of Rosmus (2.2 D) at the 2σ limits of precision
Hierarchy wave functions--from conformal correlators to Tao-Thouless states
Laughlin's wave functions, describing the fractional quantum Hall effect at
filling factors , can be obtained as correlation functions in
conformal field theory, and recently this construction was extended to Jain's
composite fermion wave functions at filling factors . Here we
generalize this latter construction and present ground state wave functions for
all quantum Hall hierarchy states that are obtained by successive condensation
of quasielectrons (as opposed to quasiholes) in the original hierarchy
construction. By considering these wave functions on a cylinder, we show that
they approach the exact ground states, the Tao-Thouless states, when the
cylinder becomes thin. We also present wave functions for the multi-hole
states, make the connection to Wen's general classification of abelian quantum
Hall fluids, and discuss whether the fractional statistics of the
quasiparticles can be analytically determined. Finally we discuss to what
extent our wave functions can be described in the language of composite
fermions.Comment: 9 page
Topological Quantum Phase Transitions in Topological Superconductors
In this paper we show that BF topological superconductors (insulators) exibit
phase transitions between different topologically ordered phases characterized
by different ground state degeneracy on manifold with non-trivial topology.
These phase transitions are induced by the condensation (or lack of) of
topological defects. We concentrate on the (2+1)-dimensional case where the BF
model reduce to a mixed Chern-Simons term and we show that the superconducting
phase has a ground state degeneracy and not . When the symmetry is
, namely when both gauge fields are compact, this model is
not equivalent to the sum of two Chern-Simons term with opposite chirality,
even if naively diagonalizable. This is due to the fact that U(1) symmetry
requires an ultraviolet regularization that make the diagonalization
impossible. This can be clearly seen using a lattice regularization, where the
gauge fields become angular variables. Moreover we will show that the phase in
which both gauge fields are compact is not allowed dynamically.Comment: 5 pages, no figure
Pairing via Index theorem
This work is motivated by a specific point of view: at short distances and
high energies the undoped and underdoped cuprates resemble the -flux phase
of the t-J model. The purpose of this paper is to present a mechanism by which
pairing grows out of the doped -flux phase. According to this mechanism
pairing symmetry is determined by a parameter controlling the quantum tunneling
of gauge flux quanta. For zero tunneling the symmetry is ,
while for large tunneling it is . A zero-temperature critical
point separates these two limits
Mottness: Identifying the Propagating Charge Modes in doped Mott Insulators
High-temperature superconductivity in the copper-oxide ceramics remains an
unsolved problem because we do not know what the propagating degrees of freedom
are in the normal state. As a result, we do not know what are the weakly
interacting degrees of freedom which pair up to form the superconducting
condensate. That the electrons are not the propagating degrees of freedom in
the cuprates is seen most directly from experiments that show spectral weight
redistributions over all energy scales. Of course, the actual propagating
degrees of freedom minimize such spectral rearrangements. This review focuses
on the range of epxerimental consequences such UV-IR mixings have on the normal
state of the cuprates, such as the pseudogap, mid-infrared band, temperature
dependence of the Hall number, the superfluid density, and a recent theoretical
advance which permits the identification of the weakly interacting degrees of
freedom in a doped Mott insulator. Within this theory, we show how the wide
range of phenomena which typify the normal state of the cuprates arises
including linear resistivity.Comment: To appear as a Colloquium in the April issue of Rev. Mod. Phys
Updated version contains new references and a clarification concerning Fig.
8
First Results from the Transit Ephemeris Refinement and Monitoring Survey (TERMS)
Transiting planet discoveries have yielded a plethora of information towards understanding the structure and atmospheres of extra-solar planets. These discoveries have been restricted to the short-period or low-periastron distance regimes due to the bias inherent in the geometric transit probability. Through the refinement of planetary orbital parmaters, and hence reducing the size of transit windows, long-period planets become feasible targets for photometric follow-up. Here we describe the TERMS project which is monitoring these host stars at predicted transit times
Mesoscale simulations of surfactant dissolution and mesophase formation
The evolution of the contact zone between pure surfactant and solvent has
been studied by mesoscale simulation. It is found that mesophase formation
becomes diffusion controlled and follows the equilibrium phase diagram
adiabatically almost as soon as individual mesophases can be identified,
corresponding to times in real systems of order 10 microseconds.Comment: 4 pages, 2 figures, ReVTeX
- …