115 research outputs found

    Fact sheet: Assessing restoration objectives following a second-entry prescribed fire in an unharvested mixed conifer forest

    Get PDF
    Efforts to restore degraded forest ecosystems often involve thinning small-diameter trees and reintroducing surface fire; however, in some areas, such as national parks, mechanical tree thinning is kept to a minimum. In these situations, prescribed fire is the best tool available to restore historical fire regimes and forest structure over broad spatial scales

    Formation of an Edge Striped Phase in Fractional Quantum Hall Systems

    Full text link
    We have performed an exact diagonalization study of up to N=12 interacting electrons on a disk at filling ν=1/3\nu={1/3} for both Coulomb and V1V_1 short-range interaction for which Laughlin wave function is the exact solution. For Coulomb interaction and N10N\geq 10 we find persistent radial oscillations in electron density, which are not captured by the Laughlin wave function. Our results srongly suggest formation of a chiral edge striped phase in quantum Hall systems. The amplitude of the charge density oscillations decays slowly, perhaps as a square root of the distance from the edge; thus the spectrum of edge excitations is likely to be affected.Comment: 4 pages, 3 Figs. include

    Electromagnetic field angular momentum in condensed matter systems

    Full text link
    Various electromagnetic systems can carry an angular momentum in their {\bf E} and {\bf B} fields. The electromagnetic field angular momentum (EMAM) of these systems can combine with the spin angular momentum to give composite fermions or composite bosons. In this paper we examine the possiblity that an EMAM could provide an explanation of the fractional quantum Hall effect (FQHE) which is complimentary to the Chern-Simons explanation. We also examine a toy model of a non-BCS superconductor (e.g. high TcT_c superconductors) in terms of an EMAM. The models presented give a common, simple picture of these two systems in terms of an EMAM. The presence of an EMAM in these systems might be tested through the observation of the decay modes of a charged, spin zero unstable particle inside one of these systems.Comment: 17 pages, no figures, to be published in Phys. Rev.

    Critical Statistical Charge for Anyonic Superconductivity

    Full text link
    We examine a criterion for the anyonic superconductivity at zero temperature in Abelian matter-coupled Chern-Simons gauge field theories in three dimensions. By solving the Dyson-Schwinger equations, we obtain a critical value of the statistical charge for the superconducting phase in a massless fermion-Chern-Simons model.Comment: 11 pages; to appear in Phys Rev

    Composite Fermions and the Energy Gap in the Fractional Quantum Hall Effect

    Full text link
    The energy gaps for the fractional quantum Hall effect at filling fractions 1/3, 1/5, and 1/7 have been calculated by variational Monte Carlo using Jain's composite fermion wave functions before and after projection onto the lowest Landau level. Before projection there is a contribution to the energy gaps from the first excited Landau level. After projection this contribution vanishes, the quasielectron charge becomes more localized, and the Coulomb energy contribution increases. The projected gaps agree well with previous calculations, lending support to the composite fermion theory.Comment: 12 pages, Revtex 3.0, 2 compressed and uuencoded postscript figures appended, NHMFL-94-062

    The Hartree-Fock state for the 2DEG at filling factor 1/2 revisited: analytic solution, dynamics and correlation energy

    Full text link
    The CDW Hartree-Fock state at half filling and half electron per unit cell is examined. Firstly, an exact solution in terms of Bloch-like states is presented. Using this solution we discuss the dynamics near half filling and show the mass to diverge logarithmically as this filling is approached. We also show how a uniform density state may be constructed from a linear combination of two degenerate solutions. Finally we show the second order correction to the energy to be an order of magnitude larger than that for competing CDW solutions with one electron per unit cell.Comment: 14 pages, no figures, extended acknowledgements, two new references include

    Theory of Shubnikov--De Haas Oscillations Around the ν=1/2\nu=1/2 Filling Factor of the Landau Level: Effect of Gauge Field Fluctuations

    Full text link
    We present a theory of magnetooscillations around the ν=1/2\nu =1/2 Landau level filling factor based on a model with a fluctuating Chern--Simons field. The quasiclassical treatment of the problem is appropriate and leads to an unconventional exp[(π/ωcτ1/2)4]\exp\left[-(\pi/\omega_c\tau^*_{1/2})^4\right] behavior of the amplitude of oscillations. This result is in good qualitative agreement with available experimental data.Comment: Revtex, 4 pages, 1 figure attached as PostScript fil

    Partially spin polarized quantum Hall effect in the filling factor range 1/3 < nu < 2/5

    Full text link
    The residual interaction between composite fermions (CFs) can express itself through higher order fractional Hall effect. With the help of diagonalization in a truncated composite fermion basis of low-energy many-body states, we predict that quantum Hall effect with partial spin polarization is possible at several fractions between ν=1/3\nu=1/3 and ν=2/5\nu=2/5. The estimated excitation gaps are approximately two orders of magnitude smaller than the gap at ν=1/3\nu=1/3, confirming that the inter-CF interaction is extremely weak in higher CF levels.Comment: 4 pages, 3 figure

    From Fractional Chern Insulators to a Fractional Quantum Spin Hall Effect

    Full text link
    We investigate the algebraic structure of flat energy bands a partial filling of which may give rise to a fractional quantum anomalous Hall effect (or a fractional Chern insulator) and a fractional quantum spin Hall effect. Both effects arise in the case of a sufficiently flat energy band as well as a roughly flat and homogeneous Berry curvature, such that the global Chern number, which is a topological invariant, may be associated with a local non-commutative geometry. This geometry is similar to the more familiar situation of the fractional quantum Hall effect in two-dimensional electron systems in a strong magnetic field.Comment: 8 pages, 3 figure; published version with labels in Figs. 2 and 3 correcte

    Quasiparticle Interactions in Fractional Quantum Hall Systems: Justification of Different Hierarchy Schemes

    Full text link
    The pseudopotentials describing the interactions of quasiparticles in fractional quantum Hall (FQH) states are studied. Rules for the identification of incompressible quantum fluid ground states are found, based upon the form of the pseudopotentials. States belonging to the Jain sequence nu=n/(1+2pn), where n and p are integers, appear to be the only incompressible states in the thermodynamic limit, although other FQH hierarchy states occur for finite size systems. This explains the success of the composite Fermion picture.Comment: RevTeX, 10 pages, 7 EPS figures, submitted fo Phys.Rev.
    corecore