324 research outputs found

    Hermit Thrush (\u3cem\u3eCatharus guttatus\u3c/em\u3e) and Veery (\u3cem\u3eC. fuscescens\u3c/em\u3e) Breeding Habitat Associations in Southern Appalachian High-Elevation Forests.

    Get PDF
    The Hermit Thrush is a new breeding bird in the Southern Appalachian high-elevation mountains, having expanded its range southward over the last few decades. Here it is sympatric with the Veery, a congeneric breeding resident. In order to more fully understand why the range expansion took place and to understand more about the local ecology of the newly arrived bird, I measured several habitat variables in 30 Hermit Thrush and 24 Veery territories. Principal Components Analysis and Cluster Analysis brought to light several patterns of habitat preferences for these 2 species. Hermit Thrushes prefer territories with more leaf litter on the ground and less shrub density than Veery territories. Competition between these species should remain low, as their niche differences brought to light in this study should enable them to breed in close proximity to each other in these high-elevation mountains

    The value of research data to the nation

    Get PDF
    Executive Director’s report Ross Wilkinson, ANDS How can Australia address the challenge of living in bushfire prone city fringes? How can Australia most effectively farm and preserve our precious soil? How can Australia understand the Great Barrier Reef? No single discipline can answer these questions, but to address these challenges data is needed from a range of sources and disciplines. Research data that is well organised and available allows research to make substantial contributions vital to Australia’s future. For example, by drawing upon data that is able to be used by soil scientists, geneticists, plant scientists, climate analysts, and others, it is possible to conduct the multidisciplinary investigations necessary to tackle truly difficult and important challenges. The data might be provided by a Terrestrial Ecosystems Research Network OzFluz tower, insect observations recorded by a citizen through the Atlas of Living Australia, genetic sequencing of insects through a Bioplatforms Australia facility, weather observations by the Bureau of Meteorology, or historical data generated by CSIRO over many decades. Each will provide a part of the jigsaw, but the pieces must be able to be put together. This requires careful collection and organisation, which together deliver enormous value to the country. However, nationally significant problems are often tackled by international cooperation, so Australia’s data assets enable Australian researchers to work with the best in the world, solving problems of both national and international significance. Australia’s data assets and research data infrastructure provide Australian researchers with an excellent platform for international collaboration. Australia has world-leading research data infrastructure: our ability to store, compute, discover, explore, analyse and publish is the best in the world. The ability to capture data through a wide range of capabilities, from the Australian Synchrotron to Integrated Marine Observation System [IMOS: imos.org.au] ocean gliders, the combination of national storage and computation through RDSI, NCI and Pawsey initiatives, the ability to publish and discover data through ANDS, the ability to analyse and explore data through Nectar, and state and local eResearch capabilities, highlights just some of the capabilities that Australian researchers are able to access. Importantly, their international partners are able to work with them using many of these resources. As well, Australian research organisations are assembling many resources to support their research. These include policies, procedures, practical infrastructure, and very importantly – people! The eResearch team and the data librarians are always keen to help. This issue of Share highlights how the data resources of Australia are providing a very substantial national benefit, and how that benefit is being realised

    System Geometries and Transit / Eclipse Probabilities

    Get PDF
    Transiting exoplanets provide access to data to study the mass-radius relation and internal structure of extrasolar planets. Long-period transiting planets allow insight into planetary environments similar to the Solar System where, in contrast to hot Jupiters, planets are not constantly exposed to the intense radiation of their parent stars. Observations of secondary eclipses additionally permit studies of exoplanet temperatures and large-scale exo-atmospheric properties. We show how transit and eclipse probabilities are related to planet-star system geometries, particularly for long-period, eccentric orbits. The resulting target selection and observational strategies represent the principal ingredients of our photometric survey of known radial-velocity planets with the aim of detecting transit signatures (TERMS).Comment: 3 pages, 2 figures. Comments: To appear in the ASP Conference Proceedings: Detection and Dynamics of Transiting Exoplanets; Proceedings of Haute Provence Observatory Colloquium (23-27 August 2010); Edited by F. Bouchy, R. F. Diaz, and C. Mouto
    • …
    corecore