652 research outputs found

    A note on the stability of slip channel flows

    Full text link
    We consider the influence of slip boundary conditions on the modal and non-modal stability of pressure-driven channel flows. In accordance with previous results by Gersting (1974) (Phys. Fluids, 17) but in contradiction with the recent investigation of Chu (2004) (C.R. Mecanique, 332), we show that slip increases significantly the value of the critical Reynolds number for linear instability. The non-modal stability analysis however reveals that the slip has a very weak influence on the maximum transient energy growth of perturbations at subcritical Reynolds numbers. Slip boundary conditions are therefore not likely to have a significant effect on the transition to turbulence in channel flows

    Hydrodynamics of self-propulsion near a boundary: predictions and accuracy of far-field approximations

    Full text link
    The swimming trajectories of self-propelled organisms or synthetic devices in a viscous fluid can be altered by hydrodynamic interactions with nearby boundaries. We explore a multipole description of swimming bodies and provide a general framework for studying the fluid-mediated modifications to swimming trajectories. The validity of the far-field description is probed for a selection of model swimmers of varying geometry and propulsive activity by comparison with full numerical simulations. The reduced model is then used to deliver simple but accurate predictions of hydrodynamically generated wall attraction and pitching dynamics, and may help to explain a number of experimental results

    Elastocapillary self-folding: buckling, wrinkling and collapse of floating filaments

    Full text link
    When a flexible filament is confined to a fluid interface, the balance between capillary attraction, bending resistance, and tension from an external source can lead to a self-buckling instability. We perform an analysis of this instability and provide analytical formulae that compare favorably with the results of detailed numerical computations. The stability and long-time dynamics of the filament are governed by a single dimensionless elastocapillary number quantifying the ratio between capillary to bending stresses. Complex, folded filament configurations such as loops, needles, and racquet shapes may be reached at longer times, and long filaments can undergo a cascade of self-folding events

    Roughness induced boundary slip in microchannel flows

    Get PDF
    Surface roughness becomes relevant if typical length scales of the system are comparable to the scale of the variations as it is the case in microfluidic setups. Here, an apparent boundary slip is often detected which can have its origin in the assumption of perfectly smooth boundaries. We investigate the problem by means of lattice Boltzmann (LB) simulations and introduce an ``effective no-slip plane'' at an intermediate position between peaks and valleys of the surface. Our simulations show good agreement with analytical results for sinusoidal boundaries, but can be extended to arbitrary geometries and experimentally obtained surface data. We find that the detected apparent slip is independent of the detailed boundary shape, but only given by the distribution of surface heights. Further, we show that the slip diverges as the amplitude of the roughness increases.Comment: 4 pages, 6 figure

    Gas Enrichment at Liquid-Wall Interfaces

    Get PDF
    Molecular dynamics simulations of Lennard-Jones systems are performed to study the effects of dissolved gas on liquid-wall and liquid-gas interfaces. Gas enrichment at walls is observed which for hydrophobic walls can exceed more than two orders of magnitude when compared to the gas density in the bulk liquid. As a consequence, the liquid structure close to the wall is considerably modified, leading to an enhanced wall slip. At liquid-gas interfaces gas enrichment is found which reduces the surface tension.Comment: main changes compared to version 1: flow simulations are included as well as different types of gase

    Wetting on Nanorough Surfaces

    Full text link
    We present in this Letter a free-energy approach to the dynamics of a fluid near a nanostructured surface. The model accounts both for the static phase equilibrium in the vicinity of the surface (wetting angles, Cassie-Wenzel transition) and the dynamical properties like liquid slippage at the boundary. This method bridges the gap between phenomenological phase-field approaches and more macroscopic lattice-Boltzmann models

    Random-roughness hydrodynamic boundary conditions

    Get PDF
    We report results of lattice Boltzmann simulations of a high-speed drainage of liquid films squeezed between a smooth sphere and a randomly rough plane. A significant decrease in the hydrodynamic resistance force as compared with that predicted for two smooth surfaces is observed. However, this force reduction does not represent slippage. The computed force is exactly the same as that between equivalent smooth surfaces obeying no-slip boundary conditions, but located at an intermediate position between peaks and valleys of asperities. The shift in hydrodynamic thickness is shown to depend on the height and density of roughness elements. Our results do not support some previous experimental conclusions on very large and shear-dependent boundary slip for similar systems.Comment: 4 pages, 4 figure
    corecore