357 research outputs found

    Joint analysis of TeV blazar light curves with FACT and HAWC

    Full text link
    Probing the high energy emission processes of blazars through their variability relies crucially on long-term monitoring. We present unprecedented light curves from unbiased observations of very high energy fluxes from the blazars Mrk 421 and Mrk 501 based on a joint analysis of data from the First G-APD Cherenkov Telescope (FACT) and the High Altitude Water Cherenkov (HAWC) Observatory. Thanks to an offset of 5.3 hours of the geographic locations, a complementary coverage of up to 12 hours of observation per day allows us to track variability on time scales of hours to days in more detail than with single-instrument analyses. Complementary features, such as better sensitivity thanks to a lower energy threshold with FACT and more regular coverage throughout the year with HAWC, provide valuable cross checks and extensions to the individual analyses. Daily flux comparisons for both Mrk 421 and Mrk 501 show largely correlated variations with a few significant exceptions. These deviations between measurements can be explained through fast variability within a few hours and will be discussed in detail.Comment: Presented at the 35th International Cosmic Ray Conference (ICRC2017), Bexco, Busan, Korea. See arXiv:1708.02572 for all HAWC contribution

    Hubble Space Telescope imaging of Ī· Carinae

    Get PDF
    We present new high spatial resolution observations of the material around Ī· Carinae obtained with the Hubble Space Telescope Wide Field/Planetary Camera. The star Ī· Carinae is one of the most massive and luminous stars in our Galaxy, and has been episodically expelling significant quantities of gas over the last few centuries. The morphology of the bright central nebulosity (the homunculus) indicates that it is a thin shell with very well defined edges, and is clumpy on 0".2 (~10^(16)cm) scales. An extension to the northeast of the star {NN/NS using Walborn's [ApJL, 204, L17 ( 1976)] nomenclature} appears to be a stellar jet and its associated bow shock. The bow shock is notable for an intriguing series of parallel linear features across its face. The S ridge and the W arc appear to be part of a "cap" of emission located to the SW and behind the star. Together, the NE jet and the SW cap suggest that the symmetry axis for the system runs NE-SW rather than SE-NW, as previously supposed. Overall, the data indicate that the material around the star may represent an oblate shell with polar blowouts, rather than a bipolar flow

    Planetary camera observations of the central parsec of M32

    Get PDF
    Analysis of V band HST Planetary Camera images of the elliptical galaxy M32 shows that its nucleus is extremely dense and remains unresolved at even the HST diffraction limit. A combined approach of image deconvolution and model fitting is used to investigate the starlight distribution into limiting radii of 0".04 (0.14 pc at 700 kpc). The logarithmic slope of the brightness profile smoothly flattens from y= -1.2 at 3.4 pc to y= -0.5 at 0.34 pc; interior to this radius the profile is equally consistent with a singular Āµ(r)āˆ r,^(-1/2) cusp or a small nonisothermal core with r_c<0.37 pc. The isophotes maintain constant ellipticity into tlle center, and there is no evidence for a central point source, disk, dust, or any other substructures. The cusp model implies central mass densities p_0 > 3 X 10^7 M_ā˜‰ pc^(-3) at the resolution limit and is consistent with a central M_ā€¢ = 3 X 10^6 M_ā˜‰ black hole; the core model implies p_0ā‰ˆ4 X 10^6 M_ā˜‰ pc^(-3). From the viewpoint of long-term stability, we argue that a starlight cusp surrounding a central black hole is the more plausible interpretation of the observations. A core at the implied density and size without a black hole has a relaxation time of only ~7 X 10^7 yr and a short stellar oollision timescale implying wholesale stellar merging over the age of the universe. The core would be strongly vulnerable to collapse and concomitant runaway stellar merging. Collapse may lead to formation of a massive black hole in any case if it cannot be reversed by formation of a binary from high-mass merger products. Regardless of the ultimate fate of the core, however, structural evolution of the core will always be accompanied by strong evolution of the core population-the constant isophote shape and absence of a central color gradient appear to show that such evolution has not occurred. In contrast, the high velocities around a black hole imply long relaxation and stellar collision times for the cusp population compared to the age of the universe
    • ā€¦
    corecore