25 research outputs found

    Genotype-dependent Burst of Transposable Element Expression in Crowns of Hexaploid Wheat (Triticum aestivum L.) during Cold Acclimation

    Get PDF
    The expression of 1,613 transposable elements (TEs) represented in the Affymetrix Wheat Genome Chip was examined during cold treatment in crowns of four hexaploid wheat genotypes that vary in tolerance to cold and in flowering time. The TE expression profiles showed a constant level of expression throughout the experiment in three of the genotypes. In winter Norstar, the most cold-hardy of the four genotypes, a subset of the TEs showed a burst of expression after vernalization saturation was achieved. About 47% of the TEs were expressed, and both Class I (retrotransposons) and Class II (DNA transposons) types were well represented. Gypsy and Copia were the most represented among the retrotransposons while CACTA and Mariner were the most represented DNA transposons. The data suggests that the Vrn-A1 region plays a role in the stage-specific induction of TE expression in this genotype

    Transcriptomic Analysis of Starch Biosynthesis in the Developing Grain of Hexaploid Wheat

    Get PDF
    The expression of genes involved in starch synthesis in wheat was analyzed together with the accumulation profiles of soluble sugars, starch, protein, and starch granule distribution in developing caryopses obtained from the same biological materials used for profiling of gene expression using DNA microarrays. Multiple expression patterns were detected for the different starch biosynthetic gene isoforms, suggesting their relative importance through caryopsis development. Members of the ADP-glucose pyrophosphorylase, starch synthase, starch branching enzyme, and sucrose synthase gene families showed different expression profiles; expression of some members of these gene families coincided with a period of high accumulation of starch while others did not. A biphasic pattern was observed in the rates of starch and protein accumulation which paralleled changes in global gene expression. Metabolic and regulatory genes that show a pattern of expression similar to starch accumulation and granule size distribution were identified, suggesting their coinvolvement in these biological processes

    Genome-wide gene expression analysis supports a developmental model of low temperature tolerance gene regulation in wheat (Triticum aestivum L.)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To identify the genes involved in the development of low temperature (LT) tolerance in hexaploid wheat, we examined the global changes in expression in response to cold of the 55,052 potentially unique genes represented in the Affymetrix Wheat Genome microarray. We compared the expression of genes in winter-habit (winter Norstar and winter Manitou) and spring-habit (spring Manitou and spring Norstar)) cultivars, wherein the locus for the vernalization gene <it>Vrn-A1 </it>was swapped between the parental winter Norstar and spring Manitou in the derived near-isogenic lines winter Manitou and spring Norstar. Global expression of genes in the crowns of 3-leaf stage plants cold-acclimated at 6°C for 0, 2, 14, 21, 38, 42, 56 and 70 days was examined.</p> <p>Results</p> <p>Analysis of variance of gene expression separated the samples by genetic background and by the developmental stage before or after vernalization saturation was reached. Using gene-specific ANOVA we identified 12,901 genes (at <it>p </it>< 0.001) that change in expression with respect to both genotype and the duration of cold-treatment. We examined in more detail a subset of these genes (2,771) where expression was highly influenced by the interaction between these two main factors. Functional assignments using GO annotations showed that genes involved in transport, oxidation-reduction, and stress response were highly represented. Clustering based on the pattern of transcript accumulation identified genes that were up or down-regulated by cold-treatment. Our data indicate that the cold-sensitive lines can up-regulate known cold-responsive genes comparable to that of cold-hardy lines. The levels of expression of these genes were highly influenced by the initial rate and the duration of the gene's response to cold. We show that the <it>Vrn-A1 </it>locus controls the duration of gene expression but not its initial rate of response to cold treatment. Furthermore, we provide evidence that <it>Ta.Vrn-A1 </it>and <it>Ta.Vrt1 </it>originally hypothesized to encode for the same gene showed different patterns of expression and therefore are distinct.</p> <p>Conclusion</p> <p>This study provides novel insight into the underlying mechanisms that regulate the expression of cold-responsive genes in wheat. The results support the developmental model of LT tolerance gene regulation and demonstrate the complex genotype by environment interactions that determine LT adaptation in winter annual cereals.</p

    Nonadditive Expression of Homoeologous Genes Is Established Upon Polyploidization in Hexaploid Wheat

    No full text
    Effects of polyploidy in allohexaploid wheat ( Triticum aestivum L.) have primarily been ascribed to increases in coding sequence variation and potential to acquire new gene functions through mutation of redundant loci. However, regulatory variation that arises through new promoter and transcription factor combinations or epigenetic events may also contribute to the effects of polyploidization. In this study, gene expression was characterized in a synthetic T. aestivum line and the T. turgidum and Aegilops tauschii parents to establish a timeline for such regulatory changes and estimate the frequency of nonadditive expression of homoeologous transcripts in newly formed T. aestivum . Large-scale analysis of nonadditive gene expression was assayed by microarray expression experiments, where synthetic T. aestivum gene expression was compared to additive model values (mid-parent) calculated from parental T. turgidum and Ae. tauschii expression levels. Approximately 16% of genes were estimated to display nonadditive expression in synthetic T. aestivum . A certain fraction of the genes (2.9%) showed overdominance or underdominance. cDNA–single strand conformation polymorphism analysis was applied to measure expression of homoeologous transcripts and further verify microarray data. The results demonstrate that allopolyploidization, per se , results in rapid initiation of differential expression of homoeologous loci and nonadditive gene expression in T. aestivum

    PHYTOCHROME C regulation of photoperiodic flowering via PHOTOPERIOD1 is mediated by EARLY FLOWERING 3 in Brachypodium distachyon.

    No full text
    Daylength sensing in many plants is critical for coordinating the timing of flowering with the appropriate season. Temperate climate-adapted grasses such as Brachypodium distachyon flower during the spring when days are becoming longer. The photoreceptor PHYTOCHROME C is essential for long-day (LD) flowering in B. distachyon. PHYC is required for the LD activation of a suite of genes in the photoperiod pathway including PHOTOPERIOD1 (PPD1) that, in turn, result in the activation of FLOWERING LOCUS T (FT1)/FLORIGEN, which causes flowering. Thus, B. distachyon phyC mutants are extremely delayed in flowering. Here we show that PHYC-mediated activation of PPD1 occurs via EARLY FLOWERING 3 (ELF3), a component of the evening complex in the circadian clock. The extreme delay of flowering of the phyC mutant disappears when combined with an elf3 loss-of-function mutation. Moreover, the dampened PPD1 expression in phyC mutant plants is elevated in phyC/elf3 mutant plants consistent with the rapid flowering of the double mutant. We show that loss of PPD1 function also results in reduced FT1 expression and extremely delayed flowering consistent with results from wheat and barley. Additionally, elf3 mutant plants have elevated expression levels of PPD1, and we show that overexpression of ELF3 results in delayed flowering associated with a reduction of PPD1 and FT1 expression, indicating that ELF3 represses PPD1 transcription consistent with previous studies showing that ELF3 binds to the PPD1 promoter. Indeed, PPD1 is the main target of ELF3-mediated flowering as elf3/ppd1 double mutant plants are delayed flowering. Our results indicate that ELF3 operates downstream from PHYC and acts as a repressor of PPD1 in the photoperiod flowering pathway of B. distachyon
    corecore