207 research outputs found

    Lattice Properties of PbX (X = S, Se, Te): Experimental Studies and ab initio Calculations Including Spin-Orbit Effects

    Full text link
    During the past five years the low temperature heat capacity of simple semiconductors and insulators has received renewed attention. Of particular interest has been its dependence on isotopic masses and the effect of spin- orbit coupling in ab initio calculations. Here we concentrate on the lead chalcogenides PbS, PbSe and PbTe. These materials, with rock salt structure, have different natural isotopes for both cations and anions, a fact that allows a systematic experimental and theoretical study of isotopic effects e.g. on the specific heat. Also, the large spin-orbit splitting of the 6p electrons of Pb and the 5p of Te allows, using a computer code which includes spin-orbit interaction, an investigation of the effect of this interaction on the phonon dispersion relations and the temperature dependence of the specific heat and on the lattice parameter. It is shown that agreement between measurements and calculations significantly improves when spin-orbit interaction is included.Comment: 25 pages, 12 Figures, 1 table, submitted to PR

    Vibrational and Thermal Properties of ZnX (X=Se, Te): Density Functional Theory (LDA and GGA) versus Experiment

    Full text link
    We calculated the phonon dispersion relations of ZnX (X=Se, Te) employing ab initio techniques. These relations have been used to evaluate the temperature dependence of the respective specific heats of crystals with varied isotopic compositions. These results have been compared with mea- surements performed on crystals down to 2 K. The calculated and measured data are generally in excellent agreement with each other. Trends in the phonon dispersion relations and the correspond- ing densities of states for the zinc chalcogenide series of zincblende-type materials are discussed.Comment: 10 pages, submitted to PR

    Electronic and phononic properties of the chalcopyrite CuGaS2

    Full text link
    The availability of ab initio electronic calculations and the concomitant techniques for deriving the corresponding lattice dynamics have been profusely used for calculating thermodynamic and vibrational properties of semiconductors, as well as their dependence on isotopic masses. The latter have been compared with experimental data for elemental and binary semiconductors with different isotopic compositions. Here we present theoretical and experimental data for several vibronic and thermodynamic properties of CuGa2, a canonical ternary semiconductor of the chalcopyrite family. Among these properties are the lattice parameters, the phonon dispersion relations and densities of states (projected on the Cu, Ga, and S constituents), the specific heat and the volume thermal expansion coefficient. The calculations were performed with the ABINIT and VASP codes within the LDA approximation for exchange and correlation and the results are compared with data obtained on samples with the natural isotope composition for Cu, Ga and S, as well as for isotope enriched samples.Comment: 9 pages, 8 Figures, submitted to Phys. Rev

    Electronic, vibrational, and thermodynamic properties of ZnS (zincblende and rocksalt structure)

    Full text link
    We have measured the specific heat of zincblende ZnS for several isotopic compositions and over a broad temperature range (3 to 1100 K). We have compared these results with calculations based on ab initio electronic band structures, performed using both LDA and GGA exchange- correlation functionals. We have compared the lattice dynamics obtained in this manner with experimental data and have calculated the one-phonon and two-phonon densities of states. We have also calculated mode Grueneisen parameters at a number of high symmetry points of the Brillouin zone. The electronic part of our calculations has been used to investigate the effect of the 3d core electrons of zinc on the spin-orbit splitting of the top valence bands. The effect of these core electrons on the band structure of the rock salt modification of ZnS is also discussed.Comment: 33pages, 16 Figures, submitted to Phys. Rev.

    Heat Capacity of PbS: Isotope Effects

    Full text link
    In recent years, the availability of highly pure stable isotopes has made possible the investigation of the dependence of the physical properties of crystals, in particular semiconductors, on their isotopic composition. Following the investigation of the specific heat (CpC_p, CvC_v) of monatomic crystals such as diamond, silicon, and germanium, similar investigations have been undertaken for the tetrahedral diatomic systems ZnO and GaN (wurtzite structure), for which the effect of the mass of the cation differs from that of the anion. In this article we present measurements for a semiconductor with rock salt structure, namely lead sulfide. Because of the large difference in the atomic mass of both constituents (MPbM_{\rm Pb}= 207.21 and (MSM_{\rm S}=32.06 a.m.u., for the natural isotopic abundance) the effects of varying the cation and that of the anion mass are very different for this canonical semiconductor. We compare the measured temperature dependence of Cp≈CvC_p \approx C_v, and the corresponding derivatives with respect to (MPbM_{\rm Pb} and MSM_{\rm S}), with \textit{\textit{ab initio}} calculations based on the lattice dynamics obtained from the local density approximation (LDA) electronic band structure. Quantitative deviations between theory and experiment are attributed to the absence of spin-orbit interaction in the ABINIT program used for the electronic band structure calculations.Comment: 17 pages including 10 Fig

    Assessing Student Mindset, Interest, Participation, and Rapport in the Post-Pandemic Public Speaking Classroom: Effects of Modality Change and Communication Growth Mindset

    Get PDF
    The COVID-19 pandemic created an exigency for educators to reevaluate their approaches to the classroom with one major dimension being course modality. This study uses the Instructional Beliefs Model to examine the impacts of course modality (i.e., hybrid versus face-to-face formats) and students’ communication growth mindset on student engagement in the foundational public speaking course. Consistent with pre-COVID-19 findings, the results indicated that modality does not significantly impact student engagement, with one exception: higher cognitive interest scores were reported among students in the hybrid modality. Communication growth mindset associated positively with all student engagement variables examined: student interest–emotional, student interest–cognitive, participation, and class rapport. The findings offer tentative optimism about the promise of blended public speaking course modalities, and evidence for the necessity of mindset intervention to maximize student success
    • …
    corecore