30,370 research outputs found

    Thermal comfort guidelines for production spaces within multi-storey garment factories located in Bangladesh

    Get PDF
    This research presents extensive field data on indoor thermal conditions along with workers' comfort votes taken at their workstations within three existing multi-storied garment factories during the three seasons (cool-dry, hot-dry and warm-humid) of Bangladesh. The main objective of the study was to observe the impact of thermal conditions on workers’ indoor thermal perception during each season of a year and from this identify thermal comfort guidelines (e.g. neutral temperatures, comfort ranges, preferred airspeeds and directions) to execute their production work comfortably. Subjective votes were collected from a total of 908 workers with the thermal data, physiological data and adaptive measures recorded simultaneously. Statistical analyses revealed that workers can accept a wider and relatively higher comfort range than the predicted band during cool-dry and hot-dry seasons, for instance, 22.7–29.1 °C and 22.3–30.4 °C respectively. A narrower comfort band (e.g. 28.7–30.9 °C), close to the predicted range, was found during the warm-humid season, which can be maintained by reducing radiant temperature and elevating airspeed. Further analyses indicated that workers prefer a mean airspeed of 0.3  m/s and comfort range of 0–3.0  m/s specific to their activities preferably from inlets located on south, north and east facades while upward and downward air movement, from for example ceiling fans, causes a rise of air temperature in the occupational zone and thermal discomfort. This research also suggested that the maximum distances of workstations from the ventilation inlets (windows) should be maintained at 12–18 m for sufficient cross ventilation, personal controls and adaptive opportunities to help maintain preferred thermal condition

    Toxic level hypergolic vapor detection sensor development

    Get PDF
    Development of an electrochemical sensor technology capable of PPB level hypergolic vapor sensing is reported. A portable instrument capable of meeting the design goals is described

    Exploring the challenges of implementing e-health: a protocol for an update of a systematic review of reviews.

    Get PDF
    There is great potential for e-health to deliver cost-effective, quality healthcare and spending on e-health systems by governments and healthcare systems is increasing worldwide. However, the literature often describes problematic and unsuccessful attempts to implement these new technologies into routine clinical practice. To understand and address the challenges of implementing e-health, a systematic review was conducted in 2009, which identified several conceptual barriers and facilitators to implementation. As technology is rapidly changing and new e-health solutions are constantly evolving to meet the needs of current practice, an update of this review is deemed necessary to understand current challenges to the implementation of e-health. This research aims to identify, summarise and synthesise currently available evidence, by undertaking a systematic review of reviews to explore the barriers and facilitators to implementing e-health across a range of healthcare settings

    Action and Energy of the Gravitational Field

    Get PDF
    We present a detailed examination of the variational principle for metric general relativity as applied to a ``quasilocal'' spacetime region \M (that is, a region that is both spatially and temporally bounded). Our analysis relies on the Hamiltonian formulation of general relativity, and thereby assumes a foliation of \M into spacelike hypersurfaces Σ\Sigma. We allow for near complete generality in the choice of foliation. Using a field--theoretic generalization of Hamilton--Jacobi theory, we define the quasilocal stress-energy-momentum of the gravitational field by varying the action with respect to the metric on the boundary \partial\M. The gravitational stress-energy-momentum is defined for a two--surface BB spanned by a spacelike hypersurface in spacetime. We examine the behavior of the gravitational stress-energy-momentum under boosts of the spanning hypersurface. The boost relations are derived from the geometrical and invariance properties of the gravitational action and Hamiltonian. Finally, we present several new examples of quasilocal energy--momentum, including a novel discussion of quasilocal energy--momentum in the large-sphere limit towards spatial infinity.Comment: To be published in Annals of Physics. This final version includes two new sections, one giving examples of quasilocal energy and the other containing a discussion of energy at spatial infinity. References have been added to papers by Bose and Dadhich, Anco and Tun

    Artemether resistance in vitro is linked to mutations in PfATP6 that also interact with mutations in PfMDR1 in travellers returning with Plasmodium falciparum infections.

    Get PDF
    BACKGROUND: Monitoring resistance phenotypes for Plasmodium falciparum, using in vitro growth assays, and relating findings to parasite genotype has proved particularly challenging for the study of resistance to artemisinins. METHODS: Plasmodium falciparum isolates cultured from 28 returning travellers diagnosed with malaria were assessed for sensitivity to artemisinin, artemether, dihydroartemisinin and artesunate and findings related to mutations in pfatp6 and pfmdr1. RESULTS: Resistance to artemether in vitro was significantly associated with a pfatp6 haplotype encoding two amino acid substitutions (pfatp6 A623E and S769N; (mean IC50 (95% CI) values of 8.2 (5.7 - 10.7) for A623/S769 versus 623E/769 N 13.5 (9.8 - 17.3) nM with a mean increase of 65%; p = 0.012). Increased copy number of pfmdr1 was not itself associated with increased IC50 values for artemether, but when interactions between the pfatp6 haplotype and increased copy number of pfmdr1 were examined together, a highly significant association was noted with IC50 values for artemether (mean IC50 (95% CI) values of 8.7 (5.9 - 11.6) versus 16.3 (10.7 - 21.8) nM with a mean increase of 87%; p = 0.0068). Previously described SNPs in pfmdr1 are also associated with differences in sensitivity to some artemisinins. CONCLUSIONS: These findings were further explored in molecular modelling experiments that suggest mutations in pfatp6 are unlikely to affect differential binding of artemisinins at their proposed site, whereas there may be differences in such binding associated with mutations in pfmdr1. Implications for a hypothesis that artemisinin resistance may be exacerbated by interactions between PfATP6 and PfMDR1 and for epidemiological studies to monitor emerging resistance are discussed

    Carbon Rich Extremely Metal Poor Stars: Signatures of Population-III AGB stars in Binary Systems

    Full text link
    We use the Cambridge stellar evolution code STARS to model the evolution and nucleosynthesis of zero-metallicity intermediate-mass stars. We investigate the effect of duplicity on the nucleosynthesis output of these systems and the potential abundances of the secondaries. The surfaces of zero-metallicity stars are enriched in CNO elements after second dredge up. During binary interaction, such as Roche lobe overflow or wind accretion, metals can be released from these stars and the secondaries enriched in CNO isotopes. We investigate the formation of the two most metal poor stars known, HE 0107-5240 and HE 1327-2326. The observed carbon and nitrogen abundances of HE 0107-5240 can be reproduced by accretion of material from the companion-enhanced wind of a seven solar star after second dredge-up, though oxygen and sodium are underproduced. We speculate that HE 1327-2326, which is richer in nitrogen and strontium, may similarly be formed by wind accretion in a later AGB phase after third dredge-up.Comment: 16 pages, 1 figure, 7 tables, accepted by MNRA

    IMEX evolution of scalar fields on curved backgrounds

    Get PDF
    Inspiral of binary black holes occurs over a time-scale of many orbits, far longer than the dynamical time-scale of the individual black holes. Explicit evolutions of a binary system therefore require excessively many time steps to capture interesting dynamics. We present a strategy to overcome the Courant-Friedrichs-Lewy condition in such evolutions, one relying on modern implicit-explicit ODE solvers and multidomain spectral methods for elliptic equations. Our analysis considers the model problem of a forced scalar field propagating on a generic curved background. Nevertheless, we encounter and address a number of issues pertinent to the binary black hole problem in full general relativity. Specializing to the Schwarzschild geometry in Kerr-Schild coordinates, we document the results of several numerical experiments testing our strategy.Comment: 28 pages, uses revtex4. Revised in response to referee's report. One numerical experiment added which incorporates perturbed initial data and adaptive time-steppin
    corecore