22,585 research outputs found

    Parallel matrix inversion techniques

    Full text link
    In this paper, we present techniques for inverting sparse, symmetric and positive definite matrices on parallel and distributed computers. We propose two algorithms, one for SIMD implementation and the other for MIMD implementation. These algorithms are modified versions of Gaussian elimination and they take into account the sparseness of the matrix. Our algorithms perform better than the general parallel Gaussian elimination algorithm. In order to demonstrate the usefulness of our technique, we implemented the snake problem using our sparse matrix algorithm. Our studies reveal that the proposed sparse matrix inversion algorithm significantly reduces the time taken for obtaining the solution of the snake problem. In this paper, we present the results of our experimental work

    Dielectric Breakdown Strength of Polyethylene Nanocomposites

    No full text
    The term “nanometric dielectrics” or simply “nanodielectrics” was introduced in 1994 when Lewis [1] anticipated the potential property changes that would benefit electrical insulation due to nano-sized inclusion. Such materials, containing homogenous dispersion of small amount (normally less than 10wt%) of nanoparticles (with at least one dimension in nanometre range) in host matrix, are of specific dielectric interest. Although much effort has been put forth to investigate the potential dielectric benefit of such newly emerging materials, many uncertainties remain unanswered, and much remains to be explored [2]. Current experimental work is to investigate the preparation of nanodielectrics via solution blending approach. Polyethylene blend composed of 20wt% of high density polyethylene (HDPE) in low density polyethylene (LDPE) is proposed as the base polymer, with varying content of nanosilica (between 0wt% and 10wt%) as the fillers. Although expensive, solution blending method, when compared with melt compounding method, is expected to provide better dispersion of nanoparticles in polymers, thus providing qualitative data in understanding the behaviour of nanodielectrics [3]. Upon successful preparation of polyethylene nanocomposites, breakdown strength based on ASTM Standard D149-87 is to be conducted to determine the feasibility of such dielectric materials in engineering point of view. Figure 1 illustrates the schematic diagram of the breakdown test configuration. The samples are placed between two 6.3mm diameter steel ball bearings immersed in silicone fluid. AC voltage at a preset ramp rate will be applied until the samples fail and the values of breakdown voltages will be recorded and analysed using two-parameter Weibull distribution. Based upon top-down research approach, the underlying physics and chemistry associated with dielectric property changes will then be explored

    Evaluation of present thermal barrier coatings for potential service in electric utility gas turbines

    Get PDF
    The resistance of present-day thermal barrier coatings to combustion gases found in electric utility turbines was assessed. The plasma sprayed coatings, both duplex and graded types, were primarily zirconia-based, although a calcium silicate was also evaluated. Both atmospheric burner rig tests and high pressure tests (135 psig) showed that several present-day thermal barrier coatings have a high potential for service in gas turbines burning the relatively clean GT No. 2 fuel. However, coating improvements are needed for use in turbines burning lower grade fuel such as residual oil. The duplex ZrO2.8Y2O3/NiCrA1Y coating was ranked highest and selected for near-term field testing, with Ca2SiO4/NiCrA1Y ranked second. Graded coatings show potential for corrosive turbine operating conditions and warrant further development. The coating degradation mechanisms for each coating system subjected to the various environmental conditions are also described

    Ti and V layers retard interaction between Al films and polycrystalline Si

    Get PDF
    Fine-grained polycrystalline Si (poly Si) in contact with Al films recrystallizes at temperatures well below the Si-Al eutectic (577 °C). We show that this interaction can be deferred or suppressed by placing a buffer layer of Ti or V between the Al film and the poly Si. During annealing, Ti or V form TiAl3 or Val3 at the buffer-layer–Al-film interface, but do not react with the poly Si so that the integrity of the poly Si is preserved as long as some unreacted Ti or V remains. The reaction between the Ti or V layer and the Al film is transport limited ([proportional]t^1/2) and characterized by the diffusion constants 1.5×10^15 exp(–1.8eV/kT) Å^2/sec or 8.4×10^12 exp(–1.7eV/kT) Å^2/sec, respectively

    Advanced ceramic coating development for industrial/utility gas turbine applications

    Get PDF
    The effects of ceramic coatings on the lifetimes of metal turbine components and on the performance of a utility turbine, as well as of the turbine operational cycle on the ceramic coatings were determined. When operating the turbine under conditions of constant cooling flow, the first row blades run 55K cooler, and as a result, have 10 times the creep rupture life, 10 times the low cycle fatigue life and twice the corrosion life with only slight decreases in both specific power and efficiency. When operating the turbine at constant metal temperature and reduced cooling flow, both specific power and efficiency increases, with no change in component lifetime. The most severe thermal transient of the turbine causes the coating bond stresses to approach 60% of the bond strengths. Ceramic coating failures was studied. Analytic models based on fracture mechanics theories, combined with measured properties quantitatively assessed both single and multiple thermal cycle failures which allowed the prediction of coating lifetime. Qualitative models for corrosion failures are also presented

    A Study of Factors Influencing Green IT Practices, Buying and Subscription Behaviours of Computer and Mobile Devices, and Streaming Services

    Get PDF
    The pressure of environmental sustainability and the introduction of strict transnational and local environment laws, regulations and targets have catalysed the emergency of Green IT. On individual level, Green IT can be achieved through environmentally responsible behaviour to purchase, use and disposal of products and services without damaging the environment. This research aims to investigate the Green IT behaviour of young consumers including their day-to-day Green IT practices, buying behaviour of mobile and computer devices and subscription behaviour of streaming services. The findings show that: 1) Understanding of Green IT practices (specific knowledge) has a positive influence on PBC, 2) Consumer’s PBC has a positive influence on Green IT behaviour and 3) The communication strategy has a positive influence on PBC. Research results also show that young consumers’ buying and subscribing decision are strongly influenced by factors such as appearance, specification, features, content and price than Green IT factors. Available at: https://aisel.aisnet.org/pajais/vol11/iss1/4

    Internal Dynamics and Boundary Forcing Characteristics Associated with Interannual Variability of the Asian Summer Monsoon

    Get PDF
    In this paper, we present a description of the internal dynamics and boundary forcing characteristics of two major components of the Asian summer monsoon (ASM), i.e., the South Asian (SAM) and the Southeast-East Asian monsoon (SEAM). The description is based on a new monsoon-climate paradigm in which the variability of ASM is considered as the outcome of the interplay of a "fast" and an "intermediate" monsoon subsystem, under the influenced of the "slow" varying external forcings. Two sets of regional monsoon indices derived from dynamically consistent rainfall and wind data are used in this study. For SAM, the internal dynamics is represented by that of a "classical" monsoon system where the anomalous circulation is governed by Rossby-wave dynamics, i.e., generation of anomalous vorticity induced by an off-equatorial heat source is balanced by planetary vorticity advection. On the other hand, the internal dynamics of SEAM is characterized by a "hybrid" monsoon system featuring multi-cellular meridional circulation over the East Asian section, extending from the deep tropics to midlatitudes. These meridional-cells link tropical heating to extratropical circulation system via the East Asian jetstream, and are responsible for the characteristic occurrences of zonally oriented anomalous rainfall patterns over East Asian and the subtropical western Pacific. In the extratropical regions, the major upper level vorticity balance is by anomalous vorticity advection and generation by the anomalous divergent circulation. A consequence of this is that compared to SAM, the SEAM is associated with stronger teleconnection patterns to regions outside the ASM. A strong SAM is linked to basin-scale sea surface temperature (SST) fluctuation with significant signal in the equatorial eastern Pacific. During the boreal spring SST warming in the Arabian Sea and the subtropical western Pacific may lead to a strong SAM. For SEAM, interannual variability is tied to SSTA over the Sea of Japan and the South China Sea regions, while the linkage to equatorial basin-scale SSTA is weak at best. A large scale SSTA dipole with warming (cooling) in the subtropical central (eastern) Pacific foreshadows a strong SEAM
    • …
    corecore