25,475 research outputs found
Binding of Oppositely Charged Membranes and Membrane Reorganization
We consider the electrostatic interaction between two rigid membranes, with
different surface charge densities of opposite sign, across an aqueous solution
without added salt. Exact solutions to the nonlinear Poisson-Boltzmann equation
are obtained and their physical meaning discussed. We also calculate the
electrostatic contribution to the free energy and discuss the renormalization
of the area per head group of the charged lipids arising from the Coulomb
interaction.Comment: 13 pages, 6 figures, to be published in EJP
The global monsoon system: research and forecast
The main objective of this workshop was to provide a forum for discussion between researchers and forecasters on the current status of monsoon forecasting and on priorities and opportunities for monsoon research. WMO hopes that through this series of quadrennial workshops, the following goals can be accomplished: (a) to update forecasters on the latest reseach findings and forecasting technology; (b) to update researchers on monsoon analysis and forecasting; (c) to identify basic and applied research priorities and opportunities; (d) to identify opportunities and priorities for acquiring observations; (e) to discuss the approach of a web-based training document in order to update forecasters on developments of direct relevance to monsoon forecasting
Novel Precursors for Boron Nanotubes: The Competition of Two-Center and Three-Center Bonding in Boron Sheets
We present a new class of boron sheets, composed of triangular and hexagonal
motifs, that are more stable than structures considered to date and thus are
likely to be the precursors of boron nanotubes. We describe a simple and clear
picture of electronic bonding in boron sheets and highlight the importance of
three-center bonding and its competition with two-center bonding, which can
also explain the stability of recently discovered boron fullerenes. Our
findings call for reconsideration of the literature on boron sheets, nanotubes,
and clusters.Comment: 4 pages, 4 figures, 1 tabl
Room temperature electron spin coherence in telecom-wavelength quaternary quantum wells
Time-resolved Kerr rotation spectroscopy is used to monitor the room
temperature electron spin dynamics of optical telecommunication wavelength
AlInGaAs multiple quantum wells lattice-matched to InP. We found that electron
spin coherence times and effective g-factors vary as a function of aluminum
concentration. The measured electron spin coherence times of these multiple
quantum wells, with wavelengths ranging from 1.26 microns to 1.53 microns,
reach approximately 100 ps at room temperature, and the measured electron
effective g-factors are in the range from -2.3 to -1.1.Comment: 4 pages, 4 figure
Electrostatic Attraction of Coupled Wigner Crystals: Finite Temperature Effects
In this paper, we present a unified physical picture for the electrostatic
attraction between two coupled planar Wigner crystals at finite (but below
their melting) temperature. At very low temperatures, we find a new regime
where the attraction, arising from the long-wavelength excitation of the
plasmon mode, scales with the interplanar distance as . At higher
temperatures, our calculation agrees with known results. Furthermore, we
analyze the temperature dependence of the short-ranged attraction arising from
``structural'' correlations and argue that thermal fluctuations drastically
reduce the strength of this attraction.Comment: 23 pages, 5 figures, submitted to PR
Passive CO<sub>2</sub> removal in urban soils:evidence from brownfield sites
Management of urban brownfield land can contribute to significant removal of atmospheric CO2 through the development of soil carbonate minerals. However, the potential magnitude and stability of this carbon sink is poorly quantified as previous studies address a limited range of conditions and short durations. Furthermore, the suitability of carbonate-sequestering soils for construction has not been investigated. To address these issues we measured total inorganic carbon, permeability and ground strength in the top 20 cm of soil at 20 brownfield sites in northern England, between 2015 and 2017. Across all sites accumulation occurred at a rate of 1–16 t C ha−1 yr−1, as calcite (CaCO3), corresponding to removal of approximately 4–59 t CO2 ha−1 yr−1, with the highest rate in the first 15 years after demolition. C and O stable isotope analysis of calcite confirms the atmospheric origin of the measured inorganic carbon. Statistical modelling found that pH and the content of fine materials (combined silt and clay content) were the best predictors of the total inorganic carbon content of the samples. Measurement of permeability shows that sites with carbonated soils possess a similar risk of run-off or flooding to sandy soils. Soil strength, measured as in-situ bearing capacity, increased with carbonation. These results demonstrate that the management of urban brownfield land to retain fine material derived from concrete crushing on site following demolition will promote calcite precipitation in soils, and so offers an additional CO2 removal mechanism, with no detrimental effect on drainage and possible improvements in strength. Given the large area of brownfield land that is available for development, the contribution of this process to CO2 removal by urban soils needs to be recognised in CO2 mitigation policies
- …
