72 research outputs found

    The ability of pandemic influenza virus hemagglutinins to induce lower respiratory pathology is associated with decreased surfactant protein D binding

    Get PDF
    AbstractPandemic influenza viral infections have been associated with viral pneumonia. Chimeric influenza viruses with the hemagglutinin segment of the 1918, 1957, 1968, or 2009 pandemic influenza viruses in the context of a seasonal H1N1 influenza genome were constructed to analyze the role of hemagglutinin (HA) in pathogenesis and cell tropism in a mouse model. We also explored whether there was an association between the ability of lung surfactant protein D (SP-D) to bind to the HA and the ability of the corresponding chimeric virus to infect bronchiolar and alveolar epithelial cells of the lower respiratory tract. Viruses expressing the hemagglutinin of pandemic viruses were associated with significant pathology in the lower respiratory tract, including acute inflammation, and showed low binding activity for SP-D. In contrast, the virus expressing the HA of a seasonal influenza strain induced only mild disease with little lung pathology in infected mice and exhibited strong in vitro binding to SP-D

    Impact of a delayed second dose of mRNA vaccine (BNT162b2) and inactivated SARS-CoV-2 vaccine (CoronaVac) on risks of all-cause mortality, emergency department visit, and unscheduled hospitalization

    Get PDF
    BACKGROUND: Safety after the second dose of the SARS-CoV-2 vaccine remains to be elucidated, especially among individuals reporting adverse events after their first dose. This study aims to evaluate the impact of a delayed second dose on all-cause mortality and emergency services. METHODS: A territory-wide, retrospective cohort of people who had completed two doses of mRNA (BNT162b2) or inactivated SARS-CoV-2 (CoronaVac) vaccine between February 23 and July 3, 2021, in Hong Kong was analyzed, with linkage to electronic health records retrieved from the Hong Kong Hospital Authority. Vaccine recipients were classified as receiving a second dose within recommended intervals (21-28 days for BNT162b2; 14-28 days for CoronaVac) or delayed. Study outcomes were all-cause mortality, emergency department (ED) visits, and unscheduled hospitalizations within 28 days after the second dose of vaccination. RESULTS: Among 417,497 BNT162b2 and 354,283 CoronaVac second dose recipients, 3.8% and 28.5% received the second dose beyond the recommended intervals (mean 34.4 and 31.8 days), respectively. During the study period, there were < 5 daily new cases of COVID-19 infections in the community. Delaying the second dose was not associated with all-cause mortality (hazard ratio [HR] = 1.185, 95% CI 0.478-2.937, P = 0.714), risk of ED visit (HR = 0.966, 95% CI 0.926-1.008, P = 0.113), and risk of unscheduled hospitalization (HR = 0.956, 95% CI 0.878-1.040, P = 0.294) compared to that within the recommended interval for CoronaVac recipients. No statistically significant differences in all-cause mortality (HR = 4.438, 95% CI 0.951-20.701, P = 0.058), ED visit (HR = 1.037, 95% CI 0.951-1.130, P = 0.411), and unscheduled hospitalization (HR = 1.054, 95% CI 0.867-1.281, P = 0.597) were identified between people who received a second dose of BNT162b2 within and beyond the recommended intervals. CONCLUSIONS: No significant association between delayed second dose of BNT162b2 or CoronaVac and all-cause mortality, ED visit, and unscheduled hospitalization was observed in the present cohort. Regardless of the recommended or delayed schedule for SARS-CoV-2 vaccination, a second dose of both vaccines should be administered to obtain better protection against infection and serious disease. The second dose should be administered within the recommended interval following the manufacturer's product information, until further studies support the benefits of delaying vaccination outweighing the risks

    Effectiveness of BNT162b2 and CoronaVac vaccinations against SARS-CoV-2 omicron infection in people aged 60 years or above: a case–control study

    Get PDF
    BACKGROUND: In view of limited evidence that specifically addresses vaccine effectiveness (VE) in the older population, this study aims to evaluate the real-world effectiveness of BNT162b2 and CoronaVac in older adults during the Omicron BA.2 outbreak. METHODS: This case-control study analyzed data available between January and March 2022 from the electronic health databases in Hong Kong and enrolled individuals aged 60 or above. Each case was matched with up to 10 controls by age, sex, index date and Charlson Comorbidity Index for the four outcomes (COVID-19 infection, COVID-19-related hospitalization, severe complications, and all-cause mortality) independently. Conditional logistic regression was conducted to evaluate VE of BNT162b2 and CoronaVac against COVID-19-related outcomes within 28 days after COVID-19 infection among participants stratified by age groups (60-79, ≥80 years old). RESULTS: A dose-response relationship between the number of vaccine doses received and protection against severe or fatal disease was observed. Highest VE (95% CI) against COVID-19 infection was observed in individuals aged ≥80 who received three doses of BNT162b2 [75.5% (73.1-77.7%)] or three doses of CoronaVac [53.9% (51.0-56.5%)] compared to those in the younger age group who received three doses of BNT162b2 [51.1% (49.9-52.4%)] or three doses of CoronaVac [2.0% (-0.1-4.1%)]. VE (95% CI) was higher for other outcomes, reaching 91.9% (89.4-93.8%) and 86.7% (84.3-88.8%) against COVID-19-related hospitalization; 85.8% (61.2-94.8%) and 89.8% (72.4-96.3%) against COVID-19-related severe complications; and 96.4% (92.9-98.2%) and 95.0% (92.1-96.8%) against COVID-19-related mortality after three doses of BNT162b2 and CoronaVac in older vaccine recipients, respectively. A similar dose-response relationship was established in younger vaccine recipients and after stratification by sex and Charlson Comorbidity Index. CONCLUSION: Both BNT162b2 and CoronaVac vaccination were effective in protecting older adults against COVID-19 infection and COVID-19-related severe outcomes amidst the Omicron BA.2 pandemic, and VE increased further with the third dose

    The Spill-Over Impact of the Novel Coronavirus-19 Pandemic on Medical Care and Disease Outcomes in Non-communicable Diseases: A Narrative Review

    Get PDF
    OBJECTIVES: The coronavirus-19 (COVID-19) pandemic has claimed more than 5 million lives worldwide by November 2021. Implementation of lockdown measures, reallocation of medical resources, compounded by the reluctance to seek help, makes it exceptionally challenging for people with non-communicable diseases (NCD) to manage their diseases. This review evaluates the spill-over impact of the COVID-19 pandemic on people with NCDs including cardiovascular diseases, cancer, diabetes mellitus, chronic respiratory disease, chronic kidney disease, dementia, mental health disorders, and musculoskeletal disorders. METHODS: Literature published in English was identified from PubMed and medRxiv from January 1, 2019 to November 30, 2020. A total of 119 articles were selected from 6,546 publications found. RESULTS: The reduction of in-person care, screening procedures, delays in diagnosis, treatment, and social distancing policies have unanimously led to undesirable impacts on both physical and psychological health of NCD patients. This is projected to contribute to more excess deaths in the future. CONCLUSION: The spill-over impact of COVID-19 on patients with NCD is just beginning to unravel, extra efforts must be taken for planning the resumption of NCD healthcare services post-pandemic

    Association between the risk of seizure and COVID-19 vaccinations: A self-controlled case-series study

    Get PDF
    OBJECTIVE: The risk of seizure following BNT162b2 and CoronaVac vaccinations has been sparsely investigated. This study aimed to evaluate this association. METHOD: Patients who had their first seizure-related hospitalization between February 23, 2021 and January 31, 2022 were identified in Hong Kong. All seizure episodes happening on the day of vaccination (day 0) were excluded since clinicians validated that most of the cases on day 0 were syncopal episodes. Within-individual comparison using a modified self-controlled case series analysis was applied to estimate the incidence rate ratio (IRR) with 95% confidence intervals (CI) of seizure using conditional Poisson regression. RESULTS: We identified 1656 individuals who had their first seizure-related hospitalization (BNT162b2: 426; CoronaVac: 263; unvaccinated: 967) within the observation period. The incidence of seizure was 1.04 (95% CI: 0.80-1.33) and 1.11 (95% CI: 0.80-1.50) per 100,000 doses of BNT162b2 and CoronaVac administered respectively. 16 and 17 individuals received second dose after having first seizure within 28 days after first dose of BNT162b2 and CoronaVac vaccinations, respectively. None had recurrent seizures after the second dose. There was no increased risk during day 1-6 after the first (BNT162b2: IRR=1.39, 95% CI=0.75-2.58; CoronaVac: IRR=1.19, 95% CI=0.50-2.83) and second doses (BNT162b2: IRR=1.36, 95% CI 0.72-2.57; CoronaVac: IRR=0.71, 95% CI=0.22-2.30) of vaccinations. During 7-13, 14-20- and 21-27-days post-vaccination, no association was observed for both vaccines. SIGNIFICANCE: The findings demonstrated no increased risk of seizure following BNT162b2 and CoronaVac vaccinations. Future studies will be warranted to evaluate the risk of seizure following COVID-19 vaccinations in different populations with subsequent doses to ensure the generalizability

    Comparing hybrid and regular COVID-19 vaccine-induced immunity against the Omicron epidemic

    Get PDF
    Evidence on the effectiveness of COVID-19 vaccines among people who recovered from a previous SARS-CoV-2 infection is warranted to inform vaccination recommendations. Using the territory-wide public healthcare and vaccination records of over 2.5 million individuals in Hong Kong, we examined the potentially differential risk of SARS-CoV-2 infection, hospitalization, and mortality between those receiving two homologous doses of BNT162b2 or CoronaVac versus those with a previous infection receiving only one dose amid the Omicron epidemic. Results show a single dose after a SARS-CoV-2 infection is associated with a lower risk of infection (BNT162b2: adjusted incidence rate ratio [IRR] = 0.475, 95% CI: 0.410–0.550; CoronaVac: adjusted IRR = 0.397, 95% CI: 0.309–0.511) and no significant difference was detected in the risk of COVID-19-related hospitalization or mortality compared with a two-dose vaccination regimen. Findings support clinical recommendations that those with a previous infection could receive a single dose to gain at least similar protection as those who received two doses without a previous infection

    Waning effectiveness against COVID-19-related hospitalisation, severe complications, and mortality with two to three doses of CoronaVac and BNT162b2: a case-control study

    Get PDF
    BACKGROUND: This study aims to evaluate waning effectiveness against severe and fatal COVID-19 with 2-3 doses of CoronaVac/BNT162b2, where data is limited. METHODS: A case-control study included individuals aged ≥18 years, unvaccinated or received 2-3 doses of CoronaVac/BNT162b2, using electronic healthcare databases in Hong Kong. Those with first COVID-19-related hospitalisation, severe complications, or mortality between 1 January and 15 August 2022 were defined as cases and matched with up-to-10 controls by age, sex, index date, and Charlson Comorbidity Index. Vaccine effectiveness (VE) against COVID-19-related outcomes was estimated at different time intervals from second and third dose vaccination (0-13 up-to 210-240 days) using conditional logistic regression adjusted for comorbidities and medications. RESULTS: By 211-240 days after second dose, VE against COVID-19-related hospitalisation reduced to 46.6% (40.7%-51.8%) for BNT162b2 and 36.2% (28.0%-43.4%) for CoronaVac, and VE against COVID-19-related mortality were 73.8% (55.9%-84.4%) and 76.6% (60.8%-86.0%). After third dose, VE against COVID-19-related hospitalisation decreased from 91.2% (89.5%-92.6%) for BNT162b2 and 76.7% (73.7%-79.4%) for CoronaVac at 0-13 days, to 67.1% (60.4%-72.6%) and 51.3% (44.2%-57.5%) at 91-120 days. VE against COVID-19-related mortality for BNT162b2 remained high from 0-13 days [98.2% (95.0%-99.3%)] to 91-120 days [94.6% (77.7%-98.7%)], and for CoronaVac reduced from 0-13 days [96.7% (93.2%-98.4%)] to 91-120 days [86.4% (73.3%-93.1%)]. CONCLUSIONS: Significant risk reduction against COVID-19-related hospitalisation and mortality after CoronaVac or BNT162b2 vaccination was observed for >240 and >120 days after second and third dose compared to unvaccinated, despite significant waning over time. Timely administration of booster doses could provide higher levels of protection

    Real-World Effectiveness and Safety of Tixagevimab-Cilgavimab: A Target Trial Emulation Study

    Get PDF
    Background: Immunocompromised individuals are at high risk of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and subsequent severe or fatal coronavirus disease 2019 (COVID-19), yet they have suboptimal responses to mRNA and inactivated COVID-19 vaccines. The efficacy of tixagevimab–cilgavimab in reducing symptomatic SARS-CoV-2 infection was demonstrated in phase III clinical trials. Nevertheless, real-world data on the effectiveness and safety of tixagevimab–cilgavimab remain limited. Objective: The aim was to evaluate the effectiveness and safety of tixagevimab–cilgavimab among immunocompromised individuals. Methods: Adults who were immunocompromised or receiving immunosuppressive therapies were included in this target trial emulation using territory-wide electronic health records in Hong Kong. A sequential trial emulation approach was adopted to compare effectiveness and safety outcomes between individuals who received tixagevimab–cilgavimab and individuals who did not. Results: A total of 746 tixagevimab–cilgavimab recipients and 2980 controls were included from 1 May 2022 to 30 November 2022. Tixagevimab–cilgavimab significantly reduced the risk of COVID-19 infection (hazard ratio [HR] 0.708, 95% confidence interval [CI] 0.527–0.951) during a median follow-up of 60 days. No significant difference was observed in the risk of COVID-19-related hospitalisation. Zero versus eight COVID-19 mortality cases and zero versus two severe COVID-19 cases were observed in tixagevimab–cilgavimab recipients and controls, respectively. Notably, significant risk reduction in COVID-19 infection was also observed among immunocompromised individuals who had been previously vaccinated with three or more doses of COVID-19 vaccine, or had no prior COVID-19 infection history. Conclusions: Tixagevimab–cilgavimab was effective in reducing COVID-19 infection among immunocompromised patients during the Omicron wave. Findings were consistent among individuals who previously received three or more doses of COVID-19 vaccine, or had no previous history of COVID-19 infection

    Comparative Effectiveness and Safety of BNT162b2 and CoronaVac in Hong Kong: A Target Trial Emulation

    Get PDF
    OBJECTIVES: To evaluate the difference between BNT162b2 and CoronaVac in vaccine effectiveness and safety. METHODS: This target trial emulation study included individuals aged ≥ 12 during 2022. Propensity score matching was applied to ensure group balance. The Cox proportional hazard model was used to compare the effectiveness outcomes including COVID-19 infection, severity, 28-day hospitalization and 28-day mortality after infection. Poisson regression was used for safety outcomes including 32 adverse events of special interests between groups. RESULTS: 639,818 and 1,804,388 individuals were identified for the 2-dose and 3-dose comparison, respectively. In 2-dose and 3-dose comparison, the hazard ratios (HRs) (95% confidence intervals [CI]) were 0.844 [0.833-0.856] and 0.749 [0.743-0.755] for COVID-19 infection, 0.692 [0.656-0.731] and 0.582 [0.559-0.605] for hospitalization, 0.566 [0.417-0.769] and 0.590 [0.458-0.76] for severe COVID-19, and 0.563 [0.456-0.697] and 0.457 [0.372-0.561] for mortality for BNT162b2 recipients versus CoronaVac recipients, respectively. Regarding safety, 2-dose BNT162b2 recipients had a significantly higher incidence of myocarditis (Incidence rate ratio[IRR][95% CI]: 8.999 [1.14-71.017]) versus CoronaVac recipients, but the difference was insignificant in 3-dose comparison (IRR [95% CI]: 2.000 [0.500-7.996]). CONCLUSIONS: BNT162b2 has higher effectiveness among individuals aged ≥ 12 against COVID-19-related outcomes for SARS-CoV-2 omicron compared to CoronaVac, with almost 50% lower mortality risk. (200 words)
    • …
    corecore