7 research outputs found

    Incidence of femoracetabular impingement at-risk radiographic parameters in asymptomatic young Chinese and Whites: a computerised tomogram study

    Get PDF
    Conference Theme: Defying the Aging Spine: Our Mission ContinuesConcurrent Free Papers 5 - Sports: no. 5.16INTRODUCTION: Femoroacetabular impingement (FAI) is uncommon in Chinese when compared with Whites. It has been postulated that this is due to a difference in hip joint osteometry. However, there is no study comparing FAI at-risk radiographic signs between the 2 populations. METHODS: A total of 201 subjects (99 Whites and 102 Chinese) scheduled for computed tomogram of pelvis for non–orthopaedic-related diagnosis were …postprin

    A rare disease in an atypical location—Kimura’s Disease of the upper extremity

    No full text

    Utilizing Oxygen Redox in Layered Cathode Materials from Multiscale Perspective

    No full text
    In high-capacity layered oxide cathode materials, utilization of lattice oxygen as a redox center is considered to be one of the most promising approaches to overcome the capacity limitation set by conventional transition metal redox centers. However, rapid material degradation is often associated with oxygen oxidation, leading to formidable challenges in utilizing oxygen redox. Further mechanistic understanding of the oxygen activities thus becomes critical to better control oxygen redox reactions. This review summarizes recent advances for investigating oxygen redox reactions in cathode materials from a multiscale perspective, i.e., from the atomistic level to the microstructure regime. First the mechanistic aspects of oxygen redox and the consequences of this reaction on various electrode degradation pathways during battery operation (e.g., oxygen loss, transition metal migration, irreversible phase transition), relating structural changes at the crystallographic scale to those at the macro scale, are discussed. Then recent developments based on atomic and microstructure modifications that are promising for improving the reversibility of oxygen redox reaction or mitigating the harmful processes arising from oxidation of the oxygen centers under high operating voltage are recounted. The analysis is concluded with a commentary on further research directions toward optimizing the oxygen activity for high-capacity charge storage

    The selective vulnerability of retinal ganglion cells in rat chronic ocular hypertension model at early phase

    No full text
    Glutamate neurotoxicity has been postulated to play a prominent role in glaucoma. In this study the possible roles of two subunits of glutamate receptors during the early phase of retinal ganglion cell (RGC) loss in a rat chronic ocular hypertension (COH) model were investigated. COH was induced by applying argon laser to the episcleral and limbal veins of the right eye of rats, the observation times were at 4, 14 and 28 days after the first laser. RGCs were retrogradely labeled by putting Fluoro-Gold (FG) on the surface of both side superior colliculus. Immunohistochemical staining using specific antibodies against N-methyl-d-aspartate receptor 1 (NR1) or glutamate receptor 2/3 (GluR2/3) was performed on the retinal sections of normal and COH eyes. Fluorescent images were captured using confocal laser scanning microscope and the number of NR1 and GluR2/3 labeled cells were counted and cell size was measured using Stereo Investigator. During the observation period, the numbers of NR1 and GluR2/3 positive RGCs in the RGC layer were reduced parallel to the loss of RGC. The dramatic loss of GluR2/3 immunoreactive neurons occurred starting immediately after the first laser to 4 days while the dramatic loss of NR1 immunoreactive neurons occurred from 14 to 28 days after the first laser. Size difference was detected in NR1 immunoreactive RGCs, large ones were more sensitive to the high ocular pressure. These results suggest that both NR1 and GluR2/3 are involved in the mediation of RGC death in the early stage of COH. © 2009 Springer Science+Business Media, LLC.link_to_subscribed_fulltex

    Solid-phase extraction-fluorimetric high performance liquid chromatographic determination of domoic acid in natural seawater mediated by an amorphous titania sorbent

    No full text
    The feasibility of using sol-gel amorphous titania (TiO 2) as a solid-phase sorbent for the pre-concentration of domoic acid (DA), a potent amnesic shellfish poisoning (ASP) toxin, directly from seawater was explored. The sol-gel titania material is able to adsorb DA from seawater, via the formation of ester-linkage between the carboxylic moieties of DA and the Ti-OH groups on the sorbent surface, at low pH and desorb it at high pH. The chemisorption process is not significantly interfered by the seawater matrix. The optimum pH values for the adsorption and desorption of DA were found to be pH 4 and 11, respectively. The optimal sorbent loading for the batch-type solid-phase extraction of DA was 0.67 mg-TiO 2 ng-DA -1 and adsorption equilibrium was achieved in 2 h at room temperature. The desorbed DA in 500 μL of 0.1 M alkaline borate buffer can be directly derviatized by 4-fluoro-7-nitro-2,1,3-benzoxadiazole (NBD-F) in aqueous media for fluorimetric HPLC quantification. Analyte recovery, repeatability and detection limit of this titania SPE-fluorimetric HPLC determination are 89%, 6.2% and 120 pg-DA mL -1 (n = 7, P < 0.05), respectively, for a sample volume of 30 mL. This titania SPE technique should also be applicable to the pre-concentration of other polar carboxylate- and phosphonate-containing biomolecules and pharmaceuticals in complex and interfering environmental sample matrices. © 2006 Elsevier B.V. All rights reserved.link_to_subscribed_fulltex
    corecore