6 research outputs found

    Risk assessment of failure during transitioning from in-centre to home haemodialysis

    Get PDF
    Background: Introducing a de-novo home haemodialysis (HHD) program often raises safety concerns as errors could potentially lead to serious adverse events. Despite the complexity of performing haemodialysis at home without the supervision of healthcare staff, HHD has a good safety record. We aim to pre-emptively identify and reduce the risks to our new HHD program by risk assessment and using failure mode and effects analysis (FMEA) to identify potential defects in the design and planning of HHD. Methods: We performed a general risk assessment of failure during transitioning from in-centre to HHD with a failure mode and effects analysis focused on the highest areas of failure. We collaborated with key team members from a well-established HHD program and one HHD patient. Risk assessment was conducted separately and then through video conference meetings for joint deliberation. We listed all key processes, sub-processes, step and then identified failure mode by scoring based on risk priority numbers. Solutions were then designed to eliminate and mitigate risk. Results: Transitioning to HHD was found to have the highest risk of failure with 3 main processes and 34 steps. We identified a total of 59 areas with potential failures. The median and mean risk priority number (RPN) scores from failure mode effect analysis were 5 and 38, with the highest RPN related to vascular access at 256. As many failure modes with high RPN scores were related to vascular access, we focussed on FMEA by identifying the risk mitigation strategies and possible solutions in all 9 areas in access-related medical emergencies in a bundled- approach. We discussed, the risk reduction areas of setting up HHD and how to address incidents that occurred and those not preventable. Conclusions: We developed a safety framework for a de-novo HHD program by performing FMEA in high-risk areas. The involvement of two teams with different clinical experience for HHD allowed us to successfully pre-emptively identify risks and develop solutions

    Randomized Controlled Clinical Trial of the Effect of Treatment with Vitamin K2 on Vascular Calcification in Hemodialysis Patients (Trevasc-HDK)

    No full text
    Introduction: Vitamin K deficiency among patients on hemodialysis (HD) affects the function of matrix GLA protein (MGP), a potent vitamin K-dependent inhibitor of vascular calcification (VC). Methods: We conducted a single-center randomized controlled trial (RCT) on maintenance HD patients to examine if vitamin K2 supplementation can reduce progression of coronary artery calcification (CAC) over an 18-month study period. Patients were randomized to vitamin K2 group receiving menaquinone-7360 µg 3 times/wk or control group. The primary outcome was CAC scores at the end of the study period. The secondary outcomes were aortic valve calcification (AVC), carotid-femoral pulse wave velocity (cfPWV), aortic augmentation index (AIx), dephosphorylated undercarboxylated MGP (dp-ucMGP) levels, major adverse cardiac events (MACE), and vascular access events. Results: Of the 178 patients randomized, follow-up was completed for 138 patients. The CAC scores between the 2 groups were not statistically different at the end of 18 months (relative mean difference [RMD] 0.85, 95% CI 0.55–1.31). The secondary outcomes did not differ significantly in AVC (RMD 0.82, 95% CI 0.34–1.98), cfPWV (absolute mean difference [AMD] 0.55, 95% CI -0.50 to 1.60), and AIx (AMD 0.13, 95% CI -3.55 to 3.80). Supplementation with vitamin K2 did reduce dp-ucMGP levels (AMD -86, 95% CI -854 to -117). The composite outcome of MACE and mortality was not statistically different between the 2 groups (Hazard ratio = 0.98, 95% CI 0.50–1.94). Conclusion: Our study did not demonstrate a beneficial effect of vitamin K2 in reducing progression of VC in this population at the studied dose and duration
    corecore