12 research outputs found

    Acupuncture Transmitted Infections

    Get PDF
    published_or_final_versio

    Transport genes and chemotaxis in Laribacter hongkongensis: a genome-wide analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Laribacter hongkongensis </it>is a Gram-negative, sea gull-shaped rod associated with community-acquired gastroenteritis. The bacterium has been found in diverse freshwater environments including fish, frogs and drinking water reservoirs. Using the complete genome sequence data of <it>L. hongkongensis</it>, we performed a comprehensive analysis of putative transport-related genes and genes related to chemotaxis, motility and quorum sensing, which may help the bacterium adapt to the changing environments and combat harmful substances.</p> <p>Results</p> <p>A genome-wide analysis using Transport Classification Database TCDB, similarity and keyword searches revealed the presence of a large diversity of transporters (n = 457) and genes related to chemotaxis (n = 52) and flagellar biosynthesis (n = 40) in the <it>L. hongkongensis </it>genome. The transporters included those from all seven major transporter categories, which may allow the uptake of essential nutrients or ions, and extrusion of metabolic end products and hazardous substances. <it>L. hongkongensis </it>is unique among closely related members of <it>Neisseriaceae </it>family in possessing higher number of proteins related to transport of ammonium, urea and dicarboxylate, which may reflect the importance of nitrogen and dicarboxylate metabolism in this assacharolytic bacterium. Structural modeling of two C<sup><sub>4</sub></sup>-dicarboxylate transporters showed that they possessed similar structures to the determined structures of other DctP-TRAP transporters, with one having an unusual disulfide bond. Diverse mechanisms for iron transport, including hemin transporters for iron acquisition from host proteins, were also identified. In addition to the chemotaxis and flagella-related genes, the <it>L. hongkongensis </it>genome also contained two copies of <it>qseB/qseC </it>homologues of the AI-3 quorum sensing system.</p> <p>Conclusions</p> <p>The large number of diverse transporters and genes involved in chemotaxis, motility and quorum sensing suggested that the bacterium may utilize a complex system to adapt to different environments. Structural modeling will provide useful insights on the transporters in <it>L. hongkongensis</it>.</p

    Virulence determinants, drug resistance and mobile genetic elements of Laribacter hongkongensis: a genome-wide analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Laribacter hongkongensis </it>is associated with community-acquired gastroenteritis and traveler's diarrhea. In this study, we performed an in-depth annotation of the genes in its genome related to the various steps in the infective process, drug resistance and mobile genetic elements.</p> <p>Results</p> <p>For acid and bile resistance, <it>L. hongkongensis </it>possessed a urease gene cassette, two <it>arc </it>gene clusters and bile salt efflux systems. For intestinal colonization, it possessed a putative adhesin of the autotransporter family homologous to those of diffusely adherent <it>Escherichia coli </it>(<it>E. coli</it>) and enterotoxigenic <it>E. coli</it>. To evade from host defense, it possessed superoxide dismutase and catalases. For lipopolysaccharide biosynthesis, it possessed the same set of genes that encode enzymes for synthesizing lipid A, two Kdo units and heptose units as <it>E. coli</it>, but different genes for its symmetrical acylation pattern, and nine genes for polysaccharide side chains biosynthesis. It contained a number of CDSs that encode putative cell surface acting (RTX toxin and hemolysins) and intracellular cytotoxins (patatin-like proteins) and enzymes for invasion (outer membrane phospholipase A). It contained a broad variety of antibiotic resistance-related genes, including genes related to β-lactam (n = 10) and multidrug efflux (n = 54). It also contained eight prophages, 17 other phage-related CDSs and 26 CDSs for transposases.</p> <p>Conclusions</p> <p>The <it>L. hongkongensis </it>genome possessed genes for acid and bile resistance, intestinal mucosa colonization, evasion of host defense and cytotoxicity and invasion. A broad variety of antibiotic resistance or multidrug resistance genes, a high number of prophages, other phage-related CDSs and CDSs for transposases, were also identified.</p

    Environmental adaptability and stress tolerance of Laribacter hongkongensis: a genome-wide analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Laribacter hongkongensis </it>is associated with community-acquired gastroenteritis and traveler's diarrhea and it can reside in human, fish, frogs and water. In this study, we performed an in-depth annotation of the genes in its genome related to adaptation to the various environmental niches.</p> <p>Results</p> <p><it>L. hongkongensis </it>possessed genes for DNA repair and recombination, basal transcription, alternative σ-factors and 109 putative transcription factors, allowing DNA repair and global changes in gene expression in response to different environmental stresses. For acid stress, it possessed a urease gene cassette and two <it>arc </it>gene clusters. For alkaline stress, it possessed six CDSs for transporters of the monovalent cation/proton antiporter-2 and NhaC Na<sup>+</sup>:H<sup>+ </sup>antiporter families. For heavy metals acquisition and tolerance, it possessed CDSs for iron and nickel transport and efflux pumps for other metals. For temperature stress, it possessed genes related to chaperones and chaperonins, heat shock proteins and cold shock proteins. For osmotic stress, 25 CDSs were observed, mostly related to regulators for potassium ion, proline and glutamate transport. For oxidative and UV light stress, genes for oxidant-resistant dehydratase, superoxide scavenging, hydrogen peroxide scavenging, exclusion and export of redox-cycling antibiotics, redox balancing, DNA repair, reduction of disulfide bonds, limitation of iron availability and reduction of iron-sulfur clusters are present. For starvation, it possessed phosphorus and, despite being asaccharolytic, carbon starvation-related CDSs.</p> <p>Conclusions</p> <p>The <it>L. hongkongensis </it>genome possessed a high variety of genes for adaptation to acid, alkaline, temperature, osmotic, oxidative, UV light and starvation stresses and acquisition of and tolerance to heavy metals.</p

    Environmental adaptability and stress tolerance of Laribacter hongkongensis: a genome-wide analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Laribacter hongkongensis </it>is associated with community-acquired gastroenteritis and traveler's diarrhea and it can reside in human, fish, frogs and water. In this study, we performed an in-depth annotation of the genes in its genome related to adaptation to the various environmental niches.</p> <p>Results</p> <p><it>L. hongkongensis </it>possessed genes for DNA repair and recombination, basal transcription, alternative σ-factors and 109 putative transcription factors, allowing DNA repair and global changes in gene expression in response to different environmental stresses. For acid stress, it possessed a urease gene cassette and two <it>arc </it>gene clusters. For alkaline stress, it possessed six CDSs for transporters of the monovalent cation/proton antiporter-2 and NhaC Na<sup>+</sup>:H<sup>+ </sup>antiporter families. For heavy metals acquisition and tolerance, it possessed CDSs for iron and nickel transport and efflux pumps for other metals. For temperature stress, it possessed genes related to chaperones and chaperonins, heat shock proteins and cold shock proteins. For osmotic stress, 25 CDSs were observed, mostly related to regulators for potassium ion, proline and glutamate transport. For oxidative and UV light stress, genes for oxidant-resistant dehydratase, superoxide scavenging, hydrogen peroxide scavenging, exclusion and export of redox-cycling antibiotics, redox balancing, DNA repair, reduction of disulfide bonds, limitation of iron availability and reduction of iron-sulfur clusters are present. For starvation, it possessed phosphorus and, despite being asaccharolytic, carbon starvation-related CDSs.</p> <p>Conclusions</p> <p>The <it>L. hongkongensis </it>genome possessed a high variety of genes for adaptation to acid, alkaline, temperature, osmotic, oxidative, UV light and starvation stresses and acquisition of and tolerance to heavy metals.</p

    Development of a multi-locus sequence typing scheme for Laribacter hongkongensis, a novel bacterium associated with freshwater fish-borne gastroenteritis and traveler's diarrhea

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Laribacter hongkongensis is a newly discovered, facultative anaerobic, Gram-negative, motile, sea gull-shaped rod associated with freshwater fish borne gastroenteritis and traveler's diarrhea. A highly reproducible and discriminative typing system is essential for better understanding of the epidemiology of <it>L. hongkongensis</it>. In this study, a multilocus sequence typing (MLST) system was developed for <it>L. hongkongensis</it>. The system was used to characterize 146 <it>L. hongkongensis </it>isolates, including 39 from humans and 107 from fish.</p> <p>Results</p> <p>Fragments (362 to 504 bp) of seven housekeeping genes were amplified and sequenced. Among the 3068 bp of the seven loci, 332 polymorphic sites were observed. The median number of alleles at each locus was 34 [range 22 (<it>ilvC</it>) to 45 (<it>thiC</it>)]. All seven genes showed very low <it>d</it><sub><it>n</it></sub>/<it>d</it><sub><it>s </it></sub>ratios of < 0.04, indicating that no strong positive selective pressure is present. A total of 97 different sequence types (STs) were assigned to the 146 isolates, with 80 STs identified only once. The overall discriminatory power was 0.9861. eBURST grouped the isolates into 12 lineages, with six groups containing only isolates from fish and three groups only isolates from humans. Standardized index of association (<it>I</it><sup><it>S</it></sup><sub><it>A</it></sub>) measurement showed significant linkage disequilibrium in isolates from both humans and fish. The <it>I</it><sup><it>S</it></sup><sub><it>A </it></sub>for the isolates from humans and fish were 0.270 and 0.636, indicating the isolates from fish were more clonal than the isolates from humans. Only one interconnected network (<it>acnB</it>) was detected in the split graphs. The P-value (P = 0) of sum of the squares of condensed fragments in Sawyer's test showed evidence of intragenic recombination in the <it>rho, acnB </it>and <it>thiC </it>loci, but the P-value (P = 1) of maximum condensed fragment in these gene loci did not show evidence of intragenic recombination. Congruence analysis showed that all the pairwise comparisons of the 7 MLST loci were incongruent, indicating that recombination played a substantial role in the evolution of <it>L. hongkongensis</it>. A website for <it>L. hongkongensis </it>MLST was set up and can be accessed at <url>http://mlstdb.hku.hk:14206/MLST_index.html</url>.</p> <p>Conclusion</p> <p>A highly reproducible and discriminative MLST system was developed for <it>L. hongkongensis</it>.</p

    Coronavirus HKU15 in respiratory tract of pigs and first discovery of coronavirus quasispecies in 5′-untranslated region

    No full text
    Coronavirus HKU15 is a deltacoronavirus that was discovered in fecal samples of pigs in Hong Kong in 2012. Over the past three years, Coronavirus HKU15 has been widely detected in pigs in East/Southeast Asia and North America and has been associated with fatal outbreaks. In all such epidemiological studies, the virus was generally only detected in fecal/intestinal samples. In this molecular epidemiology study, we detected Coronavirus HKU15 in 9.6% of the nasopharyngeal samples obtained from 249 pigs in Hong Kong. Samples that tested positive were mostly collected during winter. Complete genome sequencing of the Coronavirus HKU15 in two nasopharyngeal samples revealed quasispecies in one of the samples. Two of the polymorphic sites involved indels, but the other two involved transition substitutions. Phylogenetic analysis showed that the two nasopharyngeal strains in the present study were most closely related to the strains PDCoV/CHJXNI2/2015 from Jiangxi, China, and CH/Sichuan/S27/2012 from Sichuan, China. The outbreak strains in the United States possessed highly similar genome sequences and were clustered monophyletically, whereas the Asian strains were more diverse and paraphyletic. The detection of Coronavirus HKU15 in respiratory tracts of pigs implies that in addition to enteric infections, Coronavirus HKU15 may be able to cause respiratory infections in pigs and that in addition to fecal-oral transmission, the virus could possibly spread through the respiratory route. The presence of the virus in respiratory samples provides an alternative clinical sample to confirm the diagnosis of Coronavirus HKU15 infection. Quasispecies were unprecedentedly observed in the 5′-untranslated region of coronavirus genomes.Emerging Microbes & Infections (2017) 6, e53; doi:10.1038/emi.2017.37; published online 21 June 201

    Clinical characteristics and molecular epidemiology of hepatitis E in Shenzhen, China: a shift toward foodborne transmission of hepatitis E virus infection

    No full text
    Hepatitis E virus (HEV) is the most common cause of acute viral hepatitis in China. Recently, a shift in molecular epidemiology from hepatitis E genotype 1 (HEV-1) to hepatitis E genotype 4 (HEV-4) has been observed in Northern China, marking a switch from human-to-human transmission to zoonosis. However, similar data from cities in Southern China are lacking. This observational study of human hepatitis E cases in Shenzhen, a metropolitan city in the Pearl River Delta region, aimed to describe the clinical features and molecular epidemiology of hepatitis E in Southern China. Over a 55-month period, we identified 20 patients with acute hepatitis E. Most were middle-aged men, and 50% of patients had concomitant liver disease, of whom 70% were identified to have non-alcoholic fatty liver disease; such patients had a trend toward higher liver enzymes. Quantitative real-time RT-PCR using archived serum samples showed that 12 patients had hepatitis E viremia at presentation. Sequencing of the RNA-dependent RNA polymerase gene was performed for five of these patients, and phylogenetic analysis revealed that these five HEV isolates belonged to subgenotype 4b and were clustered with swine HEV isolates from Southern China. Combined with other studies showing similar findings, this suggests that the molecular epidemiology of hepatitis E in China is evolving toward low-level endemicity driven by foodborne transmission from seafood or pork products. The importance of concomitant liver disease, in particular non-alcoholic fatty liver disease, as a risk factor for severe hepatitis E requires further study.Emerging Microbes & Infections (2017) 6, e115 doi:10.1038/emi.2017.107; published online 20 December 201
    corecore