10,093 research outputs found

    A New Algorithm for Protein Design

    Full text link
    We apply a new approach to the reverse protein folding problem. Our method uses a minimization function in the design process which is different from the energy function used for folding. For a lattice model, we show that this new approach produces sequences that are likely to fold into desired structures. Our method is a significant improvement over previous attempts which used the energy function for designing sequences.Comment: 10 pages latex 2.09 no figures. Use uufiles to decod

    Piezoelectric and optical setup to measure an electrical field: Application to the longitudinal near-field generated by a tapered coax

    Full text link
    We propose a new setup to measure an electrical field in one direction. This setup is made of a piezoelectric sintered lead zinconate titanate film and an optical interferometric probe. We used this setup to investigate how the shape of the extremity of a coaxial cable influences the longitudinal electrical near-field generated by it. For this application, we designed our setup to have a spatial resolution of 100 um in the direction of the electrical field. Simulations and experiments are presented

    Statistical Properties of Contact Maps

    Full text link
    A contact map is a simple representation of the structure of proteins and other chain-like macromolecules. This representation is quite amenable to numerical studies of folding. We show that the number of contact maps corresponding to the possible configurations of a polypeptide chain of N amino acids, represented by (N-1)-step self avoiding walks on a lattice, grows exponentially with N for all dimensions D>1. We carry out exact enumerations in D=2 on the square and triangular lattices for walks of up to 20 steps and investigate various statistical properties of contact maps corresponding to such walks. We also study the exact statistics of contact maps generated by walks on a ladder.Comment: Latex file, 15 pages, 12 eps figures. To appear on Phys. Rev.

    Information Loss in Coarse Graining of Polymer Configurations via Contact Matrices

    Full text link
    Contact matrices provide a coarse grained description of the configuration omega of a linear chain (polymer or random walk) on Z^n: C_{ij}(omega)=1 when the distance between the position of the i-th and j-th step are less than or equal to some distance "a" and C_{ij}(omega)=0 otherwise. We consider models in which polymers of length N have weights corresponding to simple and self-avoiding random walks, SRW and SAW, with "a" the minimal permissible distance. We prove that to leading order in N, the number of matrices equals the number of walks for SRW, but not for SAW. The coarse grained Shannon entropies for SRW agree with the fine grained ones for n <= 2, but differs for n >= 3.Comment: 18 pages, 2 figures, latex2e Main change: the introduction is rewritten in a less formal way with the main results explained in simple term

    Protein design in a lattice model of hydrophobic and polar amino acids

    Full text link
    A general strategy is described for finding which amino acid sequences have native states in a desired conformation (inverse design). The approach is used to design sequences of 48 hydrophobic and polar aminoacids on three-dimensional lattice structures. Previous studies employing a sequence-space Monte-Carlo technique resulted in the successful design of one sequence in ten attempts. The present work also entails the exploration of conformations that compete significantly with the target structure for being its ground state. The design procedure is successful in all the ten cases.Comment: RevTeX, 12 pages, 1 figur

    Design of Force Fields from Data at Finite Temperature

    Full text link
    We investigate the problem of how to obtain the force field between atoms of an experimentally determined structure. We show how this problem can be efficiently solved, even at finite temperature, where the position of the atoms differs substantially from the ground state. We apply our method to systems modeling proteins and demonstrate that the correct potentials can be recovered even in the presence of thermal noise.Comment: 10 pages, 1 postcript figure, Late

    A Solvable Model of Secondary Structure Formation in Random Hetero-Polymers

    Full text link
    We propose and solve a simple model describing secondary structure formation in random hetero-polymers. It describes monomers with a combination of one-dimensional short-range interactions (representing steric forces and hydrogen bonds) and infinite range interactions (representing polarity forces). We solve our model using a combination of mean field and random field techniques, leading to phase diagrams exhibiting second-order transitions between folded, partially folded and unfolded states, including regions where folding depends on initial conditions. Our theoretical results, which are in excellent agreement with numerical simulations, lead to an appealing physical picture of the folding process: the polarity forces drive the transition to a collapsed state, the steric forces introduce monomer specificity, and the hydrogen bonds stabilise the conformation by damping the frustration-induced multiplicity of states.Comment: 24 pages, 14 figure
    • …
    corecore