5,439 research outputs found
Mechanical Properties of Carbon Nanotubes Composites
A critical review of theoretical models aiming to explain the physical properties of composites based on polymeric matrices reinforced with carbon nanotubes is presented. Attention is paid to descriptions based on molecular dynamics, continuum mechanics, and finite element analysis. It is shown that both the continuum mechanics approximation and the finite size element analyses fail to describe composites with very thin interfaces, while the performances of molecular dynamics simulations are still restricted by computer\u27s performances. The limitations of the continuum mechanics approximation are analyzed in detail
Energy of Isolated Systems at Retarded Times as the Null Limit of Quasilocal Energy
We define the energy of a perfectly isolated system at a given retarded time
as the suitable null limit of the quasilocal energy . The result coincides
with the Bondi-Sachs mass. Our is the lapse-unity shift-zero boundary value
of the gravitational Hamiltonian appropriate for the partial system
contained within a finite topologically spherical boundary . Moreover, we show that with an arbitrary lapse and zero shift the same
null limit of the Hamiltonian defines a physically meaningful element in the
space dual to supertranslations. This result is specialized to yield an
expression for the full Bondi-Sachs four-momentum in terms of Hamiltonian
values.Comment: REVTEX, 16 pages, 1 figur
Recommended from our members
A simple, reliable and robust reinforcement method for the fabrication of (RE)–Ba–Cu–O bulk superconductors
Abstract: Bulk high temperature superconductors (HTS) based on the rare-earth barium cuprates [(RE)BCO] have the potential to be applied in a variety of engineering and technological applications such as trapped field magnets, rotating electrical machines, magnetic bearings and flywheel energy storage systems. The key materials figure of merit for most practical applications of bulk superconductors is simply the product of the maximum current density that can be supported, which correlates directly with the maximum achievable trapped magnetic field, and the physical length scale over which the current flows. Unfortunately, however, bulk (RE)BCO superconductors exhibit relatively poor mechanical properties due to their inherent ceramic nature. Consequently, the performance of these materials as trapped field magnets is limited significantly by their tensile strength, rather than critical current and size, given that the relatively large Lorentz forces produced in the generation of large magnetic fields can lead to catastrophic mechanical failure. In the present work, we describe a simple, but effective and reliable reinforcement methodology to enhance the mechanical properties of (RE)BCO bulk superconductors by incorporating hybrid SiC fibres consisting of a tungsten core with SiC cladding within the bulk microstructure. An improvement in tensile strength by up to 40% has been achieved via this process and, significantly, without compromising the superconducting performance of the bulk material
The VCAM1-ApoE pathway directs microglial chemotaxis and alleviates Alzheimer\u27s disease pathology
In Alzheimer\u27s disease (AD), sensome receptor dysfunction impairs microglial danger-associated molecular pattern (DAMP) clearance and exacerbates disease pathology. Although extrinsic signals, including interleukin-33 (IL-33), can restore microglial DAMP clearance, it remains largely unclear how the sensome receptor is regulated and interacts with DAMP during phagocytic clearance. Here, we show that IL-33 induces VCAM1 in microglia, which promotes microglial chemotaxis toward amyloid-beta (Aβ) plaque-associated ApoE, and leads to Aβ clearance. We show that IL-33 stimulates a chemotactic state in microglia, characterized by Aβ-directed migration. Functional screening identified that VCAM1 directs microglial Aβ chemotaxis by sensing Aβ plaque-associated ApoE. Moreover, we found that disrupting VCAM1-ApoE interaction abolishes microglial Aβ chemotaxis, resulting in decreased microglial clearance of Aβ. In patients with AD, higher cerebrospinal fluid levels of soluble VCAM1 were correlated with impaired microglial Aβ chemotaxis. Together, our findings demonstrate that promoting VCAM1-ApoE-dependent microglial functions ameliorates AD pathology
Prenatal antidepressant use and risk of attention-deficit/hyperactivity disorder in offspring:population based cohort study
textabstractObjective To assess the potential association between prenatal use of antidepressants and the risk of attention-deficit/hyperactivity disorder (ADHD) in offspring. Design Population based cohort study. Setting Data from the Hong Kong population based electronic medical records on the Clinical Data Analysis and Reporting System. Participants 190 618 children born in Hong Kong public hospitals between January 2001 and December 2009 and followed-up to December 2015. Main outcome measure Hazard ratio of maternal antidepressant use during pregnancy and ADHD in children aged 6 to 14 years, with an average follow-up time of 9.3 years (range 7.4-11.0 years). Results Among 190 618 children, 1252 had a mother who used prenatal antidepressants. 5659 children (3.0%) were given a diagnosis of ADHD or received treatment for ADHD. The crude hazard ratio of maternal antidepressant use during pregnancy was 2.26 (P<0.01) compared with non-use. After adjustment for potential confounding factors, including maternal psychiatric disorders and use of other psychiatric drugs, the adjusted hazard ratio was reduced to 1.39 (95% confidence interval 1.07 to 1.82, P=0.01). Likewise, similar results were observed when comparing children of mothers who had used antidepressants before pregnancy with those who were never users (1.76, 1.36 to 2.30, P<0.01). The risk of ADHD in the children of mothers with psychiatric disorders was higher compared with the children of mothers without psychiatric disorders even if the mothers had never used antidepressants (1.84, 1.54 to 2.18, P<0.01). All sensitivity analyses yielded similar results. Sibling matched analysis identified no significant difference in risk of ADHD in siblings exposed to antidepressants during gestation and those not exposed during gestation (0.54, 0.17 to 1.74, P=0.30). Conclusions The findings suggest that the association between prenatal use of antidepressants and risk of ADHD in offspring can be partially explained by confounding by indication of antidepressants. If there is a causal association, the size of the effect is probably smaller than that reported previously
Insights Into the Mechanisms of Brain Endothelial Erythrophagocytosis
The endothelial cells which form the inner cellular lining of the vasculature can act as non-professional phagocytes to ingest and remove emboli and aged/injured red blood cells (RBCs) from circulation. We previously demonstrated an erythrophagocytic phenotype of the brain endothelium for oxidatively stressed RBCs with subsequent migration of iron-rich RBCs and RBC degradation products across the brain endothelium in vivo and in vitro, in the absence of brain endothelium disruption. However, the mechanisms contributing to brain endothelial erythrophagocytosis are not well defined, and herein we elucidate the cellular mechanisms underlying brain endothelial erythrophagocytosis. Murine brain microvascular endothelial cells (bEnd.3 cells) were incubated with tert-butyl hydroperoxide (tBHP, oxidative stressor to induce RBC aging in vitro)- or PBS (control)-treated mouse RBCs. tBHP increased the reactive oxygen species (ROS) formation and phosphatidylserine exposure in RBCs, which were associated with robust brain endothelial erythrophagocytosis. TNFα treatment potentiated the brain endothelial erythrophagocytosis of tBHP-RBCs in vitro. Brain endothelial erythrophagocytosis was significantly reduced by RBC phosphatidylserine cloaking with annexin-V and with RBC-ROS and phosphatidylserine reduction with vitamin C. Brain endothelial erythrophagocytosis did not alter the bEnd.3 viability, and tBHP-RBCs were localized with early and late endosomes. Brain endothelial erythrophagocytosis increased the bEnd.3 total iron pool, abluminal iron levels without causing brain endothelial monolayer disruption, and ferroportin levels. In vivo, intravenous tBHP-RBC injection in aged (17–18 months old) male C57BL/6 mice significantly increased the Prussian blue-positive iron-rich lesion load compared with PBS-RBC-injected mice. In conclusion, RBC phosphatidylserine exposure and ROS are key mediators of brain endothelial erythrophagocytosis, a process which is associated with increased abluminal iron in vitro. tBHP-RBCs result in Prussian blue-positive iron-rich lesions in vivo. Brain endothelial erythrophagocytosis may provide a new route for RBC/RBC degradation product entry into the brain to produce iron-rich cerebral microhemorrhage-like lesions
Common Raven Impacts on Nesting Western Snowy Plovers: Integrating Management to Facilitate Species Recovery
The U.S. Pacific coast population of the western snowy plover (Charadrius nivosus nivosus; plover) has declined due to loss and degradation of coastal habitats, predation, and anthropogenic disturbance. The U.S. Fish and Wildlife Service listed the subspecies in 1993 as threatened under the Endangered Species Act due to the population declines and habitat loss. Predation of nests and chicks has been identified as an important cause of historic population declines, and thus, most predator management actions for this subspecies are focused on reducing this pressure. In recent years, common ravens (Corvus corax; ravens) have become the most common and pervasive predators of plover nests and chicks, especially in areas with subsidized food sources for ravens and sites without predator management. We compiled data from a variety of sources to document the impact of raven predation on plover nesting success. We discuss current raven management and suggest several tools and strategies to increase plover nesting success, including multi-state approval for the use of the avicide DRC-1339, the use of lures and new trap types, and an increase in funding for predator management. The lack of coordinated and integrated management continues to impede the recovery of the Pacific coast plover population
- …