57 research outputs found

    Fatty-acid based assessment of benthic food-web responses to multiple stressors in a large river system

    Get PDF
    Rivers are often exposed to multiple stressors, such as nutrients and contaminants, whose impacts on the river food webs may not be distinguished by sole assessment of biological community structures. We examined the benthic algal assemblages and the fatty acids (FA) of benthic macroinvertebrates in the lower Athabasca River in Canada, aiming to assess the changes in algal support and nutritional quality of the benthic food web in response to cumulative exposure to natural bitumen, municipal sewage discharge (hereafter, "sewage"), and oil sands mining ("mining"). Data show that the decline in water quality (increases in nutrient concentrations and total suspended solids) was associated with decreases in benthic diatom abundance, and was driven mainly by sewageinduced nutrient enrichment. Responses in nutritional quality of benthic macroinvertebrates, indicated by their polyunsaturated FA (PUFA) concentrations, were taxon- and stressor-specific. Nutritional quality of the larval dragonfly predator, Ophiogomphus, decreased nonlinearly with decreasing benthic diatom abundance and was lowest at the sewage-affected sites, although exposure to natural bitumen also resulted in reduced Ophiogomphus PUFA concentrations. In contrast, the PUFA concentrations of mayfly grazers/collector-gatherers were not affected by natural bitumen exposure, and were higher at the sewage and sewage+mining sites. The PUFA concentrations of the shredder Pteronarcys larvae did not change with cumulative exposure to the stressors. Sediment metal and polycyclic aromatic compound concentrations were not associated with the macroinvertebrate FA changes. Overall, we provide evidence that sewage induced reduction in trophic support by PUFA-rich diatoms, and was the predominant driver of the observed changes in FA composition and nutritional quality of the benthic macroinvertebrates. Fatty-acid metrics are useful to untangle effects of concurrent stressors, but the assessment outcomes depend on the functional feeding guilds used. A food-web perspective using multiple trophic levels and feeding guilds supports a more holistic assessment of the stressor impacts

    Dataset on seston and zooplankton fatty-acid compositions, zooplankton and phytoplankton biomass, and environmental conditions of coastal and offshore waters of the northern Baltic Sea

    Get PDF
    We analyzed the taxonomic and fatty-acid (FA) compositions of phytoplankton and zooplankton, and the environmental conditions at three coastal and offshore stations of the northern Baltic Sea. Plankton samples for FA analyses were collected under the framework of sampling campaigns of the Swedish National Marine Monitoring program in September 2017. Monitoring data of phytoplankton and zooplankton biomass, and environmental variables at each station were extracted from the Swedish Meteorological and Hydrological Institute database (https://sharkweb.smhi.se/). Monthly phytoplankton biomass at each station in July-September 2017 was aggregated by class (i.e., chyrsophytes, cryptophytes, dinoflagellates, diatoms, euglenophytes, cyanobacteria, etc.). Zooplankton biomass in September 2017 was aggregated by major taxa (i.e., Acartia sp. [Calanoida], Eurytemora affinis [Calanoida], Cladocera, Limnocalanus macrurus and other copepods (i.e. excluding Eurytemora and Acartia)). Environmental variables monthly monitored in January-October 2017 included salinity, concentrations of dissolved organic carbon, humic substances, total nitrogen and total phosphorus. These variables were measured from 0 to 10 m depth below water surface, and the depth-integrated averages were used for data analyses. Seston and zooplankton (Eurytemora affinis, Acartia sp. and Cladocera) FA compositions were analyzed using gas chromatography and mass spectroscopy (GC–MS). Our dataset could provide new insights into how taxonomic composition and biochemical quality of the planktonic food chains change with the environmental conditions in subarctic marine ecosystems

    Spatiotemporal carbon, nitrogen and phosphorus stoichiometry in planktonic food web in a northern coastal area

    Get PDF
    The concentrations of ambient nutrients and dissolved organic carbon (DOC) in northern coastal ecosystems often show large variations, due to the spatiotemporal differences in terrestial inputs. How these variations affect the stoichiometry of coastal planktonic organisms is, however, poorly known. Here we assessed the spatiotemporal variability of C, nitrogen (N), and phosphorous (P) concentrations of the seawater on the elemental stoichiometry of seston and dominant mesozooplankton taxa in a coastal area of the northern Baltic Sea. The freshwater inflow peaked in spring following the snowmelt and brought a significant amount of DOC, but not N and P to the coastal system. DOC was the main environmental descriptor for seston C:N stoichiometry. The C:N ratio of seston from 0.7 to 50 mu m and mesozooplankton followed the temporal pattern of water C:N ratio, while the temporal trend of bacteria C:N showed an opposite pattern. Our results also indicated that the C:N ratio of seawater controlled both seston and mesozooplankton C:N ratios. Our findings imply that inflows of terrestrial DOC alter the stoichiometry and reduce the nutritional quality of planktonic food webs in northern coastal ecosystems

    Retention of essential fatty acids in fish differs by species, habitat use and nutritional quality of prey

    Get PDF
    Algae-produced long-chain polyunsaturated fatty acids (LC-PUFA; with >= 20 carbon atoms) are key biomolecules for consumer production and animal health. They are transferred to higher trophic levels and accumulated in food chains. However, LC-PUFA accumulation in consumers and their trophic transfer vary with the diet quality and the physiological demand for LC-PUFA of consumers. The goal of this study was to investigate spatial and taxonomic differences in LC-PUFA retention of coastal fish predators that potentially differ in their habitat use (benthic versus pelagic) and prey quality. We analyzed the fatty acid (FA) composition of common fish species, namely roach and European perch, as well as their potential prey from benthic and pelagic habitats in three bays of the northern Baltic Sea. We then assessed whether the fish LC-PUFA retention differed between species and among the study bays with different diet quality, that is, LC-PUFA availability. Our data indicated taxon-specific differences in the retention of LC-PUFA and their precursor FA in fish (i.e., short-chain PUFA with <20 carbon atoms). Perch did not show any spatial variation in the retention of all these FA, while roach showed spatial differences in the retention of docosahexaenoic acid (DHA) and their precursor FA, but not eicosapentaenoic acid (EPA). Data suggest that diet quality and trophic reliance on benthic prey underlay the DHA retention differences in roach. Although the PUFA supply might differ among sites, the low spatial variation in LC-PUFA content of perch and roach indicates that both fishes were able to selectively retain dietary LC-PUFA. Climate change together with other existing human-caused environmental stressors are expected to alter the algal assemblages and lower their LC-PUFA supply for aquatic food webs. Our findings imply that these stressors will pose heterogeneous impacts on different fish predators. We advocate further investigations on how environmental changes would affect the nutritional quality of the basal trophic level, and their subsequent impacts on LC-PUFA retention, trophic ecology, and performance of individual fish species

    Variation in fatty acid content among benthic invertebrates in a seasonally driven system

    Get PDF
    At temperate latitudes where seasonal changing environmental conditions strongly affect the magnitude, duration and species composition of pelagic primary production, macrobenthic organisms living below the photic zone rely on the sedimentation of organic matter as their primary energy source. The succession from nutritious spring blooms to summer cyanobacteria is assumed to reduce food quality for benthic primary consumers and their fatty acid (FA) profiles. In contrast, we find low seasonal variability in FA content of five benthic macroinvertebrates spanning two trophic levels in the Baltic Sea, a system with high seasonal variation in phytoplankton species composition. However, levels of the major FA groups vary greatly between benthic species. The results suggest that benthic macroinvertebrates have evolved FA metabolism adapted to degraded sedimenting material. Moreover, our study shows that species composition of benthic macrofauna rather than seasonal changing conditions affect availability of essential nutrients to higher trophic levels

    Inverting nutrient fluxes across the land-water interface - Exploring the potential of zebra mussel (Dreissena polymorpha) farming

    Get PDF
    We studied the potential of zebra mussel farming for nutrient retention in a eutrophic lake. Duplicate experimental long-line cultivation units were deployed and mussel growth and nutrient retention were quantified after 28 months. Mussels grew well at shallow water depth (<3 m) and our 625 m(2) (lake area) experimental units produced 507 and 730 kg dry biomass, respectively, of which 94% were shells. These yields corresponded to an average retention of 92.7 +/- 23.1 kg C, 6.1 +/- 0.68 kg N, and 0.43 +/- 0.04 kg P retention, or 742 kg C, 49 kg N, and 3.5 kg P for a full-size (0.5 ha) mussel farm. We estimate that concentrating the long-lines to a depth of 2.5 m would probably have doubled these yields, based on the differences in mussel growth among depths. We further estimate that a full-size cultivation unit (0.5 ha) thus could compensate for the annual total-P run-off from 23 ha, or the biologically available P from approximately 49 ha of agricultural soils. As traditional measures have proven insufficient, decision-makers need to facilitate novel approaches to mitigate the negative effects of cultural eutrophication. We envision that zebra mussel farming, within their invaded range, provides a promising approach to invert nutrient losses in lakes and coastal lagoons

    Biomass, community composition and N:P recycling ratios of zooplankton in northern high-latitude lakes with contrasting levels of N deposition and dissolved organic carbon

    Get PDF
    Global changes are causing decreases in inorganic nitrogen (N) concentrations, increases in coloured dissolved organic carbon (DOC) concentrations, and decreases in dissolved inorganic N to total phosphorus ratios (DIN:TP) in northern lakes. The effects of these changes on phytoplankton and zooplankton biomass and the N:P recycling ratio of zooplankton remain unresolved. In 33 Swedish headwater lakes across subarctic-to-boreal gradients with different levels of N deposition (low N in the north [Vasterbotten, boreal; Abisko, subarctic] vs. high N in the south [Varmland, boreal; Jamtland, subarctic]), we measured water chemistry, phytoplankton biomass (chlorophyll-a [Chl-a], Chl-a:TP), seston mineral quality (C:P, N:P), as well as zooplankton biomass, community composition, and C:N:P stoichiometry. We estimated nutrient imbalances and the N:P recycling ratios of zooplankton using ecological stoichiometry models. There was a large-scale gradient from low lake DIN and DIN:TP in the north to high DIN and DIN:TP in the south, with lower DIN:TP in lakes coinciding with higher DOC within each region. Lower lake DIN was associated with lower phytoplankton biomass (lower Chl-a:TP). Lower lake DIN:TP was associated with richer seston mineral quality (lower seston C:P and N:P) and higher zooplankton biomass. Zooplankton community composition differed in the north vs. south, with a dominance of N-requiring calanoid copepods with high N:P in the north and P-requiring cladocerans with low N:P in the south. Also, greater differences in zooplankton community composition were found between subarctic regions (with lower DOC) than between boreal regions (with higher DOC), suggesting that increases in lake DOC and associated declines in lake DIN:TP reduce differences in zooplankton community composition. The combination of lower lake DIN, higher lake DOC, and lower lake DIN:TP led to reduced zooplankton N:P recycling ratios, possibly by reducing seston N:P and/or by enhancing calanoid copepod dominance in the zooplankton community. Our findings suggest that the combination of declining N deposition and increasing lake browning in northern high-latitude lakes will reduce phytoplankton biomass, but will concurrently enhance seston mineral quality and probably also zooplankton biomass and their recycling efficiency of P relative to N

    Autochthony and isotopic niches of benthic fauna at shallow-water hydrothermal vents

    Get PDF
    The food webs of shallow-water hydrothermal vents are supported by chemosynthetic and photosynthetic autotrophs. However, the relative importance of these two basal resources for benthic consumers and its changes along the physicochemical gradient caused by vent plumes are unknown. We used stable carbon and nitrogen isotopes (i.e., delta C-13 and delta N-15) and Bayesian mixing models to quantify the dietary contribution of basal resources to the benthic fauna at the shallow-water vents around Kueishan Island, Taiwan. Our results indicated that the food chains and consumer production at the shallow-water vents were mainly driven by photoautotrophs (total algal contribution: 26-54%) and zooplankton (19-34%) rather than by chemosynthetic production (total contribution: 14-26%). Intraspecific differences in the trophic support and isotopic niche of the benthic consumers along the physicochemical gradient were also evident. For instance, sea anemone Anthopleura sp. exhibited the greatest reliance on chemosynthetic bacteria (26%) and photoautotrophs (66%) near the vent openings, but zooplankton was its main diet in regions 150-300 m (32-49%) and 300-700 m (32-78%) away from the vent mouths. The vent-induced physicochemical gradient structures not only the community but also the trophic support and isotopic niche of vent consumers

    Macroinvertebrate traits in Arctic streams reveal latitudinal patterns in physiology and habits that are strongly linked to climate

    Get PDF
    IntroductionArctic freshwater ecosystems are undergoing rapid environmental transformation because of climate change, which is predicted to produce fundamental alterations in river community structure and function.MethodsWe explored how climate change affects benthic invertebrate communities of Arctic streams by examining patterns of their biological traits along latitudinal and climatic gradients in eastern North America (Canada) and northwestern Europe (Sweden, Norway).ResultsDespite differences in taxonomic composition between continents, we identified similarities in the functional trait niche (FTN) of predominant macroinvertebrate taxonomic groups. Trait composition differed by latitude in eastern Canada, with a predominance of cold-tolerant taxa, tubular body shape, and cased and attached habits at the highest latitudes. Differences in trait composition were evident among ecoregions in Europe, with trait dominance at the highest latitudes that was comparable to North America. There was a similar increase in the relative abundance of cold tolerance and tubular body shape and a decrease in obligate shredders and trait richness with decreasing temperatures across both continents.DiscussionThese patterns are indicative of FTNs that include physiological traits and habits that are advantageous for the low temperatures, short ice-free period, and low riparian vegetation cover at the highest latitudes. We predict that climate change will lead to an increase in functional diversity at high latitudes, as organisms with trait modalities that are currently only found at lower latitudes move northward. However, this change in trait composition will be mediated by the effect of spatial connectivity on dispersal ability, with slower change occurring on Arctic islands. These findings can support modelling of future change in Arctic freshwater assemblages in response to ongoing climate change
    • …
    corecore