6 research outputs found

    The Mediterranean Plastic Soup: synthetic polymers in Mediterranean surface waters

    Get PDF
    The Mediterranean Sea has been recently proposed as one of the most impacted regions of the world with regards to microplastics, however the polymeric composition of these floating particles is still largely unknown. Here we present the results of a large-scale survey of neustonic micro- and meso-plastics floating in Mediterranean waters, providing the first extensive characterization of their chemical identity as well as detailed information on their abundance and geographical distribution. All particles >700 μm collected in our samples were identified through FT-IR analysis (n = 4050 particles), shedding for the first time light on the polymeric diversity of this emerging pollutant. Sixteen different classes of synthetic materials were identified. Low-density polymers such as polyethylene and polypropylene were the most abundant compounds, followed by polyamides, plastic-based paints, polyvinyl chloride, polystyrene and polyvinyl alcohol. Less frequent polymers included polyethylene terephthalate, polyisoprene, poly(vinyl stearate), ethylene-vinyl acetate, polyepoxide, paraffin wax and polycaprolactone, a biodegradable polyester reported for the first time floating in off-shore waters. Geographical differences in sample composition were also observed, demonstrating sub-basin scale heterogeneity in plastics distribution and likely reflecting a complex interplay between pollution sources, sinks and residence times of different polymers at sea

    Incidence, mass and variety of plastics ingested by Laysan (Phoebastria immutabilis) and Black-footed Albatrosses (P. nigripes) recovered as by-catch in the North Pacific Ocean

    No full text
    a b s t r a c t Laysan Albatrosses (Phoebastria immutabilis) and Black-footed Albatrosses (P. nigripes) ingest plastic debris, as evidenced by studies showing plastic in the digestive contents of their chicks, but there is little documentation of the frequency and amount of ingested plastics carried in foraging adults. In this study, we quantify plastics among the digestive contents of 18 Laysan Albatrosses and 29 Black-footed Albatrosses collected as by-catch in the North Pacific Ocean. We found ingested plastic in 30 of the 47 birds examined, with Laysan Albatrosses exhibiting a greater frequency of plastic ingestion (83.3% n = 18) than Black-footed Albatrosses (51.7% n = 29) (X 2 = 4.8, df = 1, P = 0.03). Though the mass of ingested plastic in both species (mean ± SD = 0.463 g ± 1.447) was lower than previously noted among albatross chicks, the high frequency of ingested plastic we found in this study suggests that long-term effects, e.g. absorption of contaminants from plastics, may be of concern throughout the population

    Plastic ingestion by planktivorous fishes in the North Pacific Central Gyre

    No full text
    a b s t r a c t A significant amount of marine debris has accumulated in the North Pacific Central Gyre (NPCG). The effects on larger marine organisms have been documented through cases of entanglement and ingestion; however, little is known about the effects on lower trophic level marine organisms. This study is the first to document ingestion and quantify the amount of plastic found in the gut of common planktivorous fish in the NPCG. From February 11 to 14, 2008, 11 neuston samples were collected by manta trawl in the NPCG. Plastic from each trawl and fish stomach was counted and weighed and categorized by type, size class and color. Approximately 35% of the fish studied had ingested plastic, averaging 2.1 pieces per fish. Additional studies are needed to determine the residence time of ingested plastics and their effects on fish health and the food chain implications

    Plastic ingestion by planktivorous fishes in the North Pacific Central Gyre

    No full text
    a b s t r a c t A significant amount of marine debris has accumulated in the North Pacific Central Gyre (NPCG). The effects on larger marine organisms have been documented through cases of entanglement and ingestion; however, little is known about the effects on lower trophic level marine organisms. This study is the first to document ingestion and quantify the amount of plastic found in the gut of common planktivorous fish in the NPCG. From February 11 to 14, 2008, 11 neuston samples were collected by manta trawl in the NPCG. Plastic from each trawl and fish stomach was counted and weighed and categorized by type, size class and color. Approximately 35% of the fish studied had ingested plastic, averaging 2.1 pieces per fish. Additional studies are needed to determine the residence time of ingested plastics and their effects on fish health and the food chain implications

    The Mediterranean Plastic Soup: synthetic polymers in Mediterranean surface waters

    No full text
    [eng] The Mediterranean Sea has been recently proposed as one of the most impacted regions of the world with regards to microplastics, however the polymeric composition of these floating particles is still largely unknown. Here we present the results of a large-scale survey of neustonic micro- and meso-plastics floating in Mediterranean waters, providing the first extensive characterization of their chemical identity as well as detailed information on their abundance and geographical distribution. All particles >700 μm collected in our samples were identified through FT-IR analysis (n = 4050 particles), shedding for the first time light on the polymeric diversity of this emerging pollutant. Sixteen different classes of synthetic materials were identified. Low-density polymers such as polyethylene and polypropylene were the most abundant compounds, followed by polyamides, plastic-based paints, polyvinyl chloride, polystyrene and polyvinyl alcohol. Less frequent polymers included polyethylene terephthalate, polyisoprene, poly(vinyl stearate), ethylene-vinyl acetate, polyepoxide, paraffin wax and polycaprolactone, a biodegradable polyester reported for the first time floating in off-shore waters. Geographical differences in sample composition were also observed, demonstrating sub-basin scale heterogeneity in plastics distribution and likely reflecting a complex interplay between pollution sources, sinks and residence times of different polymers at sea
    corecore