109 research outputs found

    Estrogen-related and other disease diagnoses preceding Parkinson’s disease

    Get PDF
    PURPOSE: Estrogen exposure has been associated with the occurrence of Parkinson's disease (PD), as well as many other disorders, and yet the mechanisms underlying these relations are often unknown. While it is likely that estrogen exposure modifies the risk of various diseases through many different mechanisms, some estrogen-related disease processes might work in similar manners and result in association between the diseases. Indeed, the association between diseases need not be due only to estrogen-related factors, but due to similar disease processes from a variety of mechanisms. PATIENTS AND METHODS: All female Parkinson's disease cases between 1982 and 2007 (n = 12,093) were identified from the Danish National Registry of Patients, along with 10 controls matched by years of birth and enrollment. Conditional logistic regressions (CLR) were used to calculate risk of PD after diagnosis of the estrogen-related diseases, endometriosis and osteoporosis, conditioning on years of birth and enrollment. To identify novel associations between PD and any other preceding conditions, CLR was also used to calculate the odds ratios (ORs) for risk of PD for 202 different categories of preceding disease diagnoses. Empirical Bayes methods were used to identify the robust associations from the over 200 associations produced by this analysis. RESULTS: We found a positive association between osteoporosis and osteoporotic fractures and PD (OR = 1.18, 95% confidence interval [CI] of 1.08–1.28), while a lack of association was observed between endometriosis and PD (OR = 1.37, 95% CI 0.99–1.90). Using empirical Bayes analyses, 24 additional categories of diseases, likely unrelated to estrogen exposure, were also identified as potentially associated with PD. CONCLUSION: We identified several novel associations, which may provide insight into common causal mechanisms between the diseases or greater understanding of potential early preclinical signs of PD. In particular, the associations with several categories of mental disorders suggest that these may be early warning signs of PD onset or these diseases (or the causes of these diseases) may predispose to PD.US Public Health Service (R01 NS36711-09); Robert P. and Judith N. Goldberg Foundation; Aarhus University Hospital Department of Clinical Epidemiology's Research Foundatio

    Cyclin-G-associated kinase modifies alpha-synuclein expression levels and toxicity in Parkinson's disease: results from the GenePD Study

    Get PDF
    Although family history is a well-established risk factor for Parkinson's disease (PD), fewer than 5% of PD cases can be attributed to known genetic mutations. The etiology for the remainder of PD cases is unclear; however, neuronal accumulation of the protein α-synuclein is common to nearly all patients, implicating pathways that influence α-synuclein in PD pathogenesis. We report a genome-wide significant association (P = 3.97 × 10−8) between a polymorphism, rs1564282, in the cyclin-G-associated kinase (GAK) gene and increased PD risk, with a meta-analysis odds ratio of 1.48. This association result is based on the meta-analysis of three publicly available PD case–control genome-wide association study and genotyping from a new, independent Italian cohort. Microarray expression analysis of post-mortem frontal cortex from PD and control brains demonstrates a significant association between rs1564282 and higher α-synuclein expression, a known cause of early onset PD. Functional knockdown of GAK in cell culture causes a significant increase in toxicity when α-synuclein is over-expressed. Furthermore, knockdown of GAK in rat primary neurons expressing the A53T mutation of α-synuclein, a well-established model for PD, decreases cell viability. These observations provide evidence that GAK is associated with PD risk and suggest that GAK and α-synuclein interact in a pathway involved in PD pathogenesis. The GAK protein, a serine/threonine kinase, belongs to a family of proteins commonly targeted for drug development. This, combined with GAK's observed relationship to the levels of α-synuclein expression and toxicity, suggests that the protein is an attractive therapeutic target for the treatment of PD.Robert P. & Judith N. Goldberg FoundationWilliam N. & Bernice E. Bumpus FoundationHoward Hughes Medical Institute (Collaborative Innovation Award)National Science Foundation (U.S.) (R01-NS036711

    MicroRNAs located in the Hox gene clusters are implicated in huntington\u27s disease pathogenesis

    Get PDF
    Transcriptional dysregulation has long been recognized as central to the pathogenesis of Huntington\u27s disease (HD). MicroRNAs (miRNAs) represent a major system of post-transcriptional regulation, by either preventing translational initiation or by targeting transcripts for storage or for degradation. Using next-generation miRNA sequencing in prefrontal cortex (Brodmann Area 9) of twelve HD and nine controls, we identified five miRNAs (miR-10b-5p, miR-196a-5p, miR-196b-5p, miR-615-3p and miR-1247-5p) up-regulated in HD at genome-wide significance (FDR q-value \u3c 0.05). Three of these, miR-196a-5p, miR-196b-5p and miR-615-3p, were expressed at near zero levels in control brains. Expression was verified for all five miRNAs using reverse transcription quantitative PCR and all but miR-1247-5p were replicated in an independent sample (8HD/8C). Ectopic miR-10b-5p expression in PC12 HTT-Q73 cells increased survival by MTT assay and cell viability staining suggesting increased expression may be a protective response. All of the miRNAs but miR-1247-5p are located in intergenic regions of Hox clusters. Total mRNA sequencing in the same samples identified fifteen of 55 genes within the Hox cluster gene regions as differentially expressed in HD, and the Hox genes immediately adjacent to the four Hox cluster miRNAs as up-regulated. Pathway analysis of mRNA targets of these miRNAs implicated functions for neuronal differentiation, neurite outgrowth, cell death and survival. In regression models among the HD brains, huntingtin CAG repeat size, onset age and age at death were independently found to be inversely related to miR-10b-5p levels. CAG repeat size and onset age were independently inversely related to miR-196a-5p, onset age was inversely related to miR-196b-5p and age at death was inversely related to miR-615-3p expression. These results suggest these Hox-related miRNAs may be involved in neuroprotective response in HD. Recently, miRNAs have shown promise as biomarkers for human diseases and given their relationship to disease expression, these miRNAs are biomarker candidates in HD

    The GLY2019SER Mutation in LRRK2 is Not Fully Penetrant in Familial Parkinson\u27s Disease: the GenePD Study

    Get PDF
    Background: We report age-dependent penetrance estimates for leucine-rich repeat kinase 2 (LRRK2)-related Parkinson\u27s disease (PD) in a large sample of familial PD. The most frequently seen LRRK2 mutation, Gly2019Ser (G2019S), is associated with approximately 5 to 6% of familial PD cases and 1 to 2% of idiopathic cases, making it the most common known genetic cause of PD. Studies of the penetrance of LRRK2 mutations have produced a wide range of estimates, possibly due to differences in study design and recruitment, including in particular differences between samples of familial PD versus sporadic PD. Methods: A sample, including 903 affected and 58 unaffected members from 509 families ascertained for having two or more PD-affected members, 126 randomly ascertained PD patients and 197 controls, was screened for five different LRRK2 mutations. Penetrance was estimated in families of LRRK2 carriers with consideration of the inherent bias towards increased penetrance in a familial sample. Results: Thirty-one out of 509 families with multiple cases of PD (6.1%) were found to have 58 LRRK2 mutation carriers (6.4%). Twenty-nine of the 31 families had G2019S mutations while two had R1441C mutations. No mutations were identified among controls or unaffected relatives of PD cases. Nine PD-affected relatives of G2019S carriers did not carry the LRRK2 mutation themselves. At the maximum observed age range of 90 to 94 years, the unbiased estimated penetrance was 67% for G2019S families, compared with a baseline PD risk of 17% seen in the non-LRRK2-related PD families. Conclusion: Lifetime penetrance of LRRK2 estimated in the unascertained relatives of multiplex PD families is greater than that reported in studies of sporadically ascertained LRRK2 cases, suggesting that inherited susceptibility factors may modify the penetrance of LRRK2 mutations. In addition, the presence of nine PD phenocopies in the LRRK2 families suggests that these susceptibility factors may also increase the risk of non-LRRK2-related PD. No differences in penetrance were found between men and women, suggesting that the factors that influence penetrance for LRRK2 carriers are independent of the factors which increase PD prevalence in men

    Copy Number Variation in Familial Parkinson Disease

    Get PDF
    Copy number variants (CNVs) are known to cause Mendelian forms of Parkinson disease (PD), most notably in SNCA and PARK2. PARK2 has a recessive mode of inheritance; however, recent evidence demonstrates that a single CNV in PARK2 (but not a single missense mutation) may increase risk for PD. We recently performed a genome-wide association study for PD that excluded individuals known to have either a LRRK2 mutation or two PARK2 mutations. Data from the Illumina370Duo arrays were re-clustered using only white individuals with high quality intensity data, and CNV calls were made using two algorithms, PennCNV and QuantiSNP. After quality assessment, the final sample included 816 cases and 856 controls. Results varied between the two CNV calling algorithms for many regions, including the PARK2 locus (genome-wide p = 0.04 for PennCNV and p = 0.13 for QuantiSNP). However, there was consistent evidence with both algorithms for two novel genes, USP32 and DOCK5 (empirical, genome-wide p-values<0.001). PARK2 CNVs tended to be larger, and all instances that were molecularly tested were validated. In contrast, the CNVs in both novel loci were smaller and failed to replicate using real-time PCR, MLPA, and gel electrophoresis. The DOCK5 variation is more akin to a VNTR than a typical CNV and the association is likely caused by artifact due to DNA source. DNA for all the cases was derived from whole blood, while the DNA for all controls was derived from lymphoblast cell lines. The USP32 locus contains many SNPs with low minor allele frequency leading to a loss of heterozygosity that may have been spuriously interpreted by the CNV calling algorithms as support for a deletion. Thus, only the CNVs within the PARK2 locus could be molecularly validated and associated with PD susceptibility
    • …
    corecore