226 research outputs found

    The Rotation of RR Lyrae Stars

    Get PDF
    We report upper limits to rotation from the measurement of line breadths via cross-correlation analysis for 27 RR Lyrae variables. The eight best-observed stars of type RRab show the same variation of breadth with phase: the breadth peaks sharply during the rise to maximum light, drops gradually, and reaches a broad minimum during the phase of maximum radius. During this phase the breadth is always narrow, consistent with instrumental resolution and turbulence alone. For the three well-observed RRc variables, the breadth is this narrow at all phases except for a slight increase during the rise to maximum light. The remaining stars also conform to these patterns, albeit with sparse phase coverage and lower signal-to-noise ratio. We interpret these results as indicating that lines are broadened in RRab stars by shock-induced plumes or turbulence during the rise to maximum light, and perhaps by other causes as well, but not by rotation in RR Lyrae stars of either type. We estimate an upper limit of v sin i 10 km s-1 in three out of six well-studied field stars, and to the more rapid rotation, often exceeding 100 km s-1, of the Population I ÎŽ Scuti variables which occupy adjacent regions of the instability strip

    A Survey of Proper-Motion Stars. XIV. Spectroscopic Binaries among Metal-poor Field Blue Stragglers

    Get PDF
    We summarize the results from a program of monitoring the radial velocities of 10 metal-poor, high-velocity field stars whose colors are 0.01 to 0.13 mag bluer than main-sequence turnoffs of comparable-metallicity globular clusters. Two of the candidate halo blue stragglers (BD +72 94 and BD +40 1166) show no signs of velocity variability, one (HD 84937) shows only weak signs of variability, one (BD +25 1981) appears to be a very long-period binary, and six (BD -12 2669, HD 97916, HD 106516, BD +51 1817, G66-30, and G202-65) are single-lined spectroscopic binaries, with periods ranging from 167 to 844 days. Velocity coverage for the four candidates without orbital solutions ranges from 15.9 to 19.0 years. The orbital eccentricities are all low, e < 0.30 and e = 0.11. Five of the six binary orbits have very low eccentricities, with e = 0.07. We have reanalyzed the velocity data from Preston & Sneden and have derived orbital solutions similar to theirs for 10 of the spectroscopic binaries among their "blue metal-poor" stars with [Fe/H] ≀ -0.6. We confirm their conclusion that the binary frequency is high; we find 47 ± 10% if we include only the definite binaries with [Fe/H] ≀ -0.6. Our orbital solutions for the seven binaries with periods longer than 20 days all have low eccentricities, with e ≀ 0.26 and e = 0.11. These orbital characteristics are very similar to the Ba II, CH, subgiant CH, and dwarf carbon stars, suggesting that mass transfer has been involved in their formation. Of the five binary stars in our program with published abundances of lithium, all have been found to be deficient (and one in beryllium as well). In contrast, two of the three apparently single stars have published lithium abundances and show no deficiency. The mass functions for the six binaries in our program and seven similar systems studied by Preston & Sneden are consistent with their unseen companions all being white dwarfs with M ≈ 0.55 M and random orbital inclinations. Taking all of our observations and those of others together, we argue that the results are consistent with all field blue stragglers being binary systems with long periods and low eccentricities, the primary stars being deficient in lithium and the secondary stars being normal-mass white dwarfs. All these properties are suggestive of a blue-straggler formation model that involves mass transfer. For six of the 13 stars in the two programs for which s-process elemental abundances are available, no signs of enhancement are discernible, suggesting that the donor star was a first-ascent red giant. For the star with the longest orbital period (1307 days), CS 22956-028, s-process abundance enhancements have been reported. This star may be a precursor to the subgiant CH class, as suggested by Luck & Bond

    Spectroscopic Binaries, Velocity Jitter, and Rotation in Field Metal-poor Red Giant and Red Horizontal-Branch Stars

    Get PDF
    We summarize 2007 radial velocity measurements of 91 metal-poor field red giants. Excluding binary systems with orbital solutions, our coverage averages 13.7 yr per star, with a maximum of 18.0 yr. We report four significant findings. (1) Sixteen stars are found to be spectroscopic binaries, and we present orbital solutions for 14 of them. The spectroscopic binary frequency of the metal-poor red giants, with [Fe/H] ≀ -1.4, for periods less than 6000 days, is 16% ± 4%, which is not significantly different from that of comparable-metallicity field dwarfs, 17% ± 2%. The two CH stars in our program, BD -1°2582 and HD 135148, are both spectroscopic binaries. (2) Velocity jitter is present among about 40% of the giants with MV ≀ -1.4. The two best-observed cases, HD 3008 and BD +22°2411, show pseudoperiodicities of 172 and 186 days, longer than any known long-period variable in metal-poor globular clusters. Photometric variability seen in HD 3008 and three other stars showing velocity jitter hints that starspots are the cause. However, the phasing of the velocity data with the photometry data from Hipparcos is not consistent with a simple starspot model for HD 3008. We argue against orbital motion effects and radial pulsation, so rotational modulation remains the best explanation. The implied rotational velocities for HD 3008 and BD +22°2411, both with MV ≀ -1.4 and R ≈ 50 R⊙, exceed 12 km s-1. (3) Including HD 3008 and BD +22°2411, we have found signs of significant excess line broadening in eight of the 17 red giants with MV ≀ -1.4, which we interpret as rotation. In three cases, BD +30°2034, CD -37°14010, and HD 218732, the rotation is probably induced by tidal locking between axial rotation and the observed orbital motion with a stellar companion. But this cannot explain the other five stars in our sample that display signs of significant rotation. This high frequency of elevated rotational velocities does not appear to be caused by stellar mass transfer or mergers: there are too few main-sequence binaries with short enough periods. We also note that the lack of any noticeable increase in mean rotation at the magnitude level of the red giant branch luminosity function "bump" argues against the rapid rotation's being caused by the transport of internal angular momentum to the surface. Capture of a planetary-mass companion as a red giant expands in radius could explain the high rotational velocities. (4) We also find significant rotation in at least six of the roughly 15 (40%) red horizontal-branch stars in our survey. It is likely that the enhanced rotation seen among a significant fraction of both blue and red horizontal-branch stars arose when these stars were luminous red giants. Rapid rotation alone therefore appears insufficient cause to populate the blue side of the horizontal branch. While the largest projected rotational velocities seen among field blue and red horizontal-branch stars are consistent with their different sizes, neither are consistent with the large values we find for the largest red giants. This suggests that some form of angular momentum loss (and possibly mass loss) has been at work. Also puzzling is the apparent absence of rotation seen in field RR Lyrae variables. Angular momentum transfer and conservation in evolved metal-poor field stars thus pose many interesting questions for the evolution of low-mass stars

    A Survey of Proper-Motion Stars. XV. Orbital Solutions for 34 Double-lined Spectroscopic Binaries

    Get PDF
    We present orbital solutions for 34 double-lined spectroscopic binaries found in the Carney-Latham sample of 1464 stars selected for high proper motion. We use TODCOR, a two-dimensional correlation technique, to extract the velocities for the primary and secondary stars and their light ratio. For our single-order echelle spectra, obtained with the Center for Astrophysics Digital Speedometers, we find that we can reach secondaries that are as much as 2 mag fainter than their primaries. The ratio of the primary to secondary velocity residuals from the orbital fit equals approximately the secondary-to-primary light ratio, as would be expected for the photon-limited case. We use our mass and light ratios to evaluate the mass-luminosity relation for metal-poor main-sequence dwarfs in the mass range 0.55–0.8 M. We assume an L ∝ ÎČ relation and find that the exponent at around 5200 Å is 7.4 ± 0.6. We find this is in good agreement with the slope of the corresponding theoretical MV- 14 Gyr isochrones from the VandenBerg & Bell models for metal-poor stars

    Line Broadening in Field Metal-poor Red Giant and Red Horizontal Branch Stars

    Get PDF
    We report 349 radial velocities for 45 metal-poor field red giant and red horizontal branch stars. We have have identified one new spectroscopic binary, HD 4306, and one possible such system, HD 184711. We also report 57 radial velocities for 11 of the 91 stars reported on previously by Carney et al. (2003). As was found in the previous study, radial velocity "jitter" is present in many of the most luminous stars. Excluding stars showing spectroscopic binary orbital motion, all 7 of the red giants with M(V) <= -2.0 display jitter, as well as 3 of the 14 stars with -2.0 <= M(V) <= -1.4. We have also measured line broadening in all of the new spectra, using synthetic spectra as templates. The most luminous red giants show significant line broadening, as do many of the red horizontal branch stars, and we discuss briefly possible causes.Comment: To appear in the Astronomical Journa

    Optical palpation for the visualization of tumor in human breast tissue

    Get PDF
    Australian Research Council; Cancer Council Western Australia; Department of Health, Government of Western Australia; OncoResMedical; William and Marlene Schrader Trust of The University of Western AustraliaAccurate and effective removal of tumor in one operation is an important goal of breast-conserving surgery. However, it is not always achieved. Surgeons often utilize manual palpation to assess the surgical margin and/or the breast cavity. Manual palpation, however, is subjective and has relatively low resolution. Here, we investigate a tactile imaging technique, optical palpation, for the visualization of tumor. Optical palpation generates maps of the stress at the surface of tissue under static preload compression. Stress is evaluated by measuring the deformation of a contacting thin compliant layer with known mechanical properties using optical coherence tomography. In this study, optical palpation is performed on 34 freshly excised human breast specimens. Wide field-of-view (up to ~46 × 46 mm) stress images, optical palpograms, are presented from four representative specimens, demonstrating the capability of optical palpation to visualize tumor. Median stress reported for adipose tissue, 4 kPa, and benign dense tissue, 8 kPa, is significantly lower than for invasive tumor, 60 kPa. In addition, we demonstrate that optical palpation provides contrast consistent with a related optical technique, quantitative micro-elastography. This study demonstrates that optical palpation holds promise for visualization of tumor in breast-conserving surgery.PostprintPeer reviewe

    A Survey of Proper-Motion Stars. XVI. Orbital Solutions for 171 Single-lined Spectroscopic Binaries

    Get PDF
    We report 25,563 radial velocity measurements for 1359 single-lined stars in the Carney-Latham sample of 1464 stars selected for high proper motion. For 171 of these, we present spectroscopic orbital solutions. We find no obvious difference between the binary characteristics in the halo and the disk populations. The observed frequency is the same, and the period distributions are consistent with the hypothesis that the two sets of binaries were drawn from the same parent population. This suggests that metallicity in general, and radiative opacities in particular, have little influence over the fragmentation process that leads to short-period binaries. All the binaries with periods shorter than 10 days have nearly circular orbits, while the binaries with periods longer than 20 days exhibit a wide range of eccentricities and a median value of 0.37. For the metal-poor high-velocity halo binaries in our sample, the transition from circular to eccentric orbits appears to occur at about 20 days, supporting the conclusion that tidal circularization on the main sequence is important for the oldest binaries in the Galaxy

    Rotation and Macroturbulence in Metal-poor Field Red Giant and Red Horizontal Branch Stars

    Get PDF
    We report the results for rotational velocities, Vrot sin i, and macroturbulence dispersion, zeta(RT), for 12 metal-poor field red giant branch stars and 7 metal-poor field red horizontal branch stars. The results are based on Fourier transform analyses of absorption line profiles from high-resolution (R ~ 120,000), high-S/N (~ 215 per pixel) spectra obtained with the Gecko spectrograph at CFHT. We find that the zeta(RT) values for the metal-poor RGB stars are very similar to those for metal-rich disk giants studied earlier by Gray and his collaborators. Six of the RGB stars have small rotational values, less than 2.0 km/sec, while five show significant rotation, over 3 km/sec. The fraction of rapidly rotating RHB stars is somewhat lower than found among BHB stars. We devise two empirical methods to translate the line-broadening results obtained by Carney et al. (2003, 2008) into Vrot sin i for all the RGB and RHB stars they studied. Binning the RGB stars by luminosity, we find that most metal-poor field RGB stars show no detectable sign, on average, of rotation. However, the most luminous stars, with M(V) <= -1.5, do show net rotation, with mean values of 2 to 4 km/sec, depending on the algorithm employed, and these stars also show signs of radial velocity jitter and mass loss.Comment: accepted for publication in the Astronomical Journa

    A Keck/HIRES Doppler Search for Planets Orbiting Metal-Poor Dwarfs. I. Testing Giant Planet Formation and Migration Scenarios

    Get PDF
    We describe a high-precision Doppler search for giant planets orbiting a well-defined sample of metal-poor dwarfs in the field. This experiment constitutes a fundamental test of theoretical predictions which will help discriminate between proposed giant planet formation and migration models. We present here details on the survey as well as an overall assessment of the quality of our measurements, making use of the results for the stars that show no significant velocity variation.Comment: 25 pages, 7 figures, accepted for publication in the Astrophysical Journa

    Coherence function-encoded optical palpation

    Get PDF
    Funding: Australian Research Council, the National Health and Medical Research Council (Australia), OncoRes Medical, Australia.Optical palpation maps stress at the surface of biological tissue into 2D images. It relies on measuring surface deformation of a compliant layer, which to date has been performed with optical coherence tomography (OCT). OCT-based optical palpation holds promise for improved clinical diagnostics; however, the complexity and cost hinder broad adoption. In this Letter, we introduce coherence function-encoded optical palpation (CFE-OP) using a novel optical profilometry technique that exploits the envelope of the coherence function rather than its peak position, which is typically used to retrieve depth information. CFE-OP utilizes a Fabry–Perot laser diode (bandwidth, 2.2 nm) and a single photodiode in a Michelson interferometer to detect the position along the coherence envelope as a function of path length. This technique greatly reduces complexity and cost in comparison to the OCT-based approach. We perform CFE-OP on phantom and excised human breast tissue, demonstrating comparable mechanical contrast to OCT-based optical palpation and the capability to distinguish stiff tumor from soft benign tissue.PostprintPeer reviewe
    • 

    corecore