31 research outputs found

    Arginine mutation alters binding of a human monoclonal antibody to antigens linked to systemic lupus erythematosus and the antiphospholipid syndrome

    Get PDF
    Objective: Previous studies have shown the importance of somatic mutations and arginine residues in the complementarity-determining regions (CDRs) of pathogenic anti-double-stranded DNA (anti-dsDNA) antibodies in human and murine lupus, and in studies of murine antibodies, a role of mutations at position 53 in VH CDR2 has been demonstrated. We previously demonstrated in vitro expression and mutagenesis of the human IgG1 monoclonal antibody B3. The present study was undertaken to investigate, using this expression system, the importance of the arginine residue at position 53 (R53) in B3 VH. Methods: R53 was altered, by site-directed mutagenesis, to serine, asparagine, or lysine, to create 3 expressed variants of VH. In addition, the germline sequence of the VH3-23 gene (from which B3 VH is derived) was expressed either with or without arginine at position 53. These 5 new heavy chains, as well as wild-type B3 VH, were expressed with 4 different light chains, and the resulting antibodies were assessed for their ability to bind to nucleosomes, -actinin, cardiolipin, ovalbumin, 2-glycoprotein I (2GPI), and the N-terminal domain of 2GPI (domain I), using direct binding assays. Results: The presence of R53 was essential but not sufficient for binding to dsDNA and nucleosomes. Conversely, the presence of R53 reduced binding to -actinin, ovalbumin, 2GPI, and domain I of 2GPI. The combination B3 (R53S) VH/B3 VL bound human, but not bovine, 2GPI. Conclusion: The fact that the R53S substitution significantly alters binding of B3 to different clinically relevant antigens, but that the alteration is in opposite directions depending on the antigen, implies that this arginine residue plays a critical role in the affinity maturation of antibody B3

    Isolation of cDNA clones encoding the human Sm B/B′auto-immune antigen and specifically reacting with human anti-Sm auto-immune sera

    Get PDF
    AbstractA cDNA clone for the human SmB and B′ auto-immune antigens has been isolated by antibody screening of a cDNA expression library. The cDNA clone hybridises with two distinct mRNAs, one of which is expressed in a tissue-specific manner. A fusion protein expressed from the cDNA clone was recognised by a number of sera from systemic lupus erythematosus (SLE) patients containing anti-Sm antibodies but not by sera reactive with other auto-immune antigens. The potential use of this clone in a diagnostic assay for SLE and in elucidating the processes regulating the expression of SmB and B′ is discussed

    Gene therapy using herpes simplex virus-based vectors

    No full text
    Gene therapy involves the use of specific genes to treat human diseases and is thus critically dependent on efficient gene delivery systems. Although a variety of systems for such gene delivery are under development, HSV has unique advantages in terms of its large genome size and for gene delivery in the nervous system because of its ability to enter a latent state in neuronal cells. Considerable progress has been made in the effective disablement of this virus whilst retaining its ability to deliver genes and in producing long term expression of the foreign gene. Although much remains to be achieved in the further disablement of the virus and its testing in rodent and primate models of human diseases, it is likely that these viruses may ultimately be of use in human gene therapy procedures particularly for otherwise intractable neurological diseases

    An improved method for the isolation of high yields of bacteriophage lambda DNA

    No full text

    From the Journals

    No full text

    The protective effect of moderate hypothermia during intestinal ischemia-reperfusion is associated with modification of hepatic transcription factor activation

    No full text
    Background/purpose: Moderate hypothermia throughout intestinal ischemia-reperfusion (IIR) injury reduces multiple organ dysfunction. Heat shock proteins (HSPs) have been shown to be protective against ischemia-reperfusion injury, and STAT (Signal Transducers and Activators of Transcription) proteins are pivotal determinants of the cellular response to reperfusion injury. The aim of this study is to investigate the mechanism of hypothermic protection during IIR.Methods: Adult rats underwent intestinal ischemia-reperfusion (IIR), 60-minute ischemia and 60-minute reperfusion, or sham (120 minutes) at either normothermia or moderate hypothermia. Four groups of animals were studied: (1) normothermic sham (NS), (2) normothermic IIR (NIIR), (3) hypothermic sham (HS), and (4) hypothermic IIR (HIIR). Western blotting measured heat shock protein expression, phosphorylated (p-) and total (T-) hepatic STAT-1 and STAT-3.Results: There were no differences in expression of HSPs 27, 47, 60, i70, c70, or 90 between any of the experimental groups. NIIR caused a significant increase in p-STAT-1 compared with normothermic sham (P < .05) and a highly significant increase in p-STAT-3 (P < .001), both these increases were completely abolished by moderate hypothermia (P < .01 v NIIR.)Conclusions: The protective effect of moderate hypothermia on liver is not mediated by HSP expression at this time-point. Hypothermia may act by decreasing hepatic STAT activation, supporting the potential therapeutic role of moderate hypothermia. Modulation of STAT activation may also provide novel therapeutic targets
    corecore