36 research outputs found

    An Alternative to Clay in Building Materials: Red Mud Sintering Using Fly Ash via Taguchi’s Methodology

    No full text
    “Red mud” or “bauxite residue” is a highly alkaline waste generated from alumina refinery with a pH of 10.5–12.5 which poses serious environmental problems. Neutralization or its treatment by sintering in presence of additives is one of the methods for overcoming the caustic problem as it fixes nearly all the leachable free caustic soda present in red mud. In the present study, feasibility of reducing the alkaline nature of red mud by sintering using fly ash as an additive via Taguchi methodology and its use for brick production, as an alternative to clay, is investigated. The analysis of variance (ANOVA) shows that sintering temperature is the most significant parameter in the process. A pH of 8.9 was obtained at 25–50% of red mud and 50–75% fly ash with water and temperature of . Alternatively 50% of red mud can be mixed with 50% of fly ash with water at temperature of to get a pH of about 8.4. The mechanism of this process has been explained with also emphasis on chemical, mineralogical, and morphological analysis of the sintered red mud. The results would be extremely useful in utilization of red mud in building and construction industry.by Jyoti Mukhopadhyay et al.

    An Alternative to Clay in Building Materials: Red Mud Sintering Using Fly Ash via Taguchi’s Methodology

    No full text
    “Red mud” or “bauxite residue” is a highly alkaline waste generated from alumina refinery with a pH of 10.5–12.5 which poses serious environmental problems. Neutralization or its treatment by sintering in presence of additives is one of the methods for overcoming the caustic problem as it fixes nearly all the leachable free caustic soda present in red mud. In the present study, feasibility of reducing the alkaline nature of red mud by sintering using fly ash as an additive via Taguchi methodology and its use for brick production, as an alternative to clay, is investigated. The analysis of variance (ANOVA) shows that sintering temperature is the most significant parameter in the process. A pH of 8.9 was obtained at 25–50% of red mud and 50–75% fly ash with water and temperature of . Alternatively 50% of red mud can be mixed with 50% of fly ash with water at temperature of to get a pH of about 8.4. The mechanism of this process has been explained with also emphasis on chemical, mineralogical, and morphological analysis of the sintered red mud. The results would be extremely useful in utilization of red mud in building and construction industry

    Determination of BTEX by GCMS in air of offset printing plants: comparison between conventional and ecological inks

    No full text
    The use of inks containing organic solvents by the offset printing process implies in the release of volatile organic compounds to the work environment. Many of these compounds such as benzene, toluene, ethylbenzene, and the xylene isomers (well known by the acronym BTEX) are extremely toxic. In this study, the BTEX concentrations were determined in two different printing plants that use distinct types of inks: the conventional and the so-called ecological, which is manufactured based on vegetal oil. Concentration ranges were 43-84, 15-3,480, 2-133, 5-459, and 2-236 μg m-3 for benzene, toluene, ethylbenzene, m + p-xylene, and o-xylene, respectively, for the conventional printing plant. At the ecological printing plant, concentration ranges were below limit of detection (<LD)-31, <LD-618, <LD-1,690, <LD-10,500, <LD-3,360 μg m-3 for benzene, toluene, ethylbenzene, m + p-xylene, and o-xylene, respectively. BTEX concentrations are lower at the ecological printing environment than in the conventional, where mineral oil-based inks are used. However, the worker who cleans the printing matrices is exposed to high concentrations of ethylbenzene and xylenes, due probably to the cleaning product's composition (containing high amounts of BTEX). Although the BTEX concentrations found in both printing work environments were below the limits considered by the Brazilian Law for Activities and Unhealthy Operations (NR-15), the exposure to such vapors characterizes risk to the workers' health for some of the evaluated samples, mainly the personal ones. © Springer Science+Business Media B.V. 2009
    corecore