59 research outputs found

    Flip dynamics in octagonal rhombus tiling sets

    Full text link
    We investigate the properties of classical single flip dynamics in sets of two-dimensional random rhombus tilings. Single flips are local moves involving 3 tiles which sample the tiling sets {\em via} Monte Carlo Markov chains. We determine the ergodic times of these dynamical systems (at infinite temperature): they grow with the system size NTN_T like Cst.NT2lnNTCst. N_T^2 \ln N_T; these dynamics are rapidly mixing. We use an inherent symmetry of tiling sets and a powerful tool from probability theory, the coupling technique. We also point out the interesting occurrence of Gumbel distributions.Comment: 5 Revtex pages, 4 figures; definitive versio

    Efficient Triangle Counting in Large Graphs via Degree-based Vertex Partitioning

    Full text link
    The number of triangles is a computationally expensive graph statistic which is frequently used in complex network analysis (e.g., transitivity ratio), in various random graph models (e.g., exponential random graph model) and in important real world applications such as spam detection, uncovering of the hidden thematic structure of the Web and link recommendation. Counting triangles in graphs with millions and billions of edges requires algorithms which run fast, use small amount of space, provide accurate estimates of the number of triangles and preferably are parallelizable. In this paper we present an efficient triangle counting algorithm which can be adapted to the semistreaming model. The key idea of our algorithm is to combine the sampling algorithm of Tsourakakis et al. and the partitioning of the set of vertices into a high degree and a low degree subset respectively as in the Alon, Yuster and Zwick work treating each set appropriately. We obtain a running time O(m+m3/2Δlogntϵ2)O \left(m + \frac{m^{3/2} \Delta \log{n}}{t \epsilon^2} \right) and an ϵ\epsilon approximation (multiplicative error), where nn is the number of vertices, mm the number of edges and Δ\Delta the maximum number of triangles an edge is contained. Furthermore, we show how this algorithm can be adapted to the semistreaming model with space usage O(m1/2logn+m3/2Δlogntϵ2)O\left(m^{1/2}\log{n} + \frac{m^{3/2} \Delta \log{n}}{t \epsilon^2} \right) and a constant number of passes (three) over the graph stream. We apply our methods in various networks with several millions of edges and we obtain excellent results. Finally, we propose a random projection based method for triangle counting and provide a sufficient condition to obtain an estimate with low variance.Comment: 1) 12 pages 2) To appear in the 7th Workshop on Algorithms and Models for the Web Graph (WAW 2010

    A Geometric Approach to Acyclic Orientations

    Full text link

    Tailored graph ensembles as proxies or null models for real networks I: tools for quantifying structure

    Full text link
    We study the tailoring of structured random graph ensembles to real networks, with the objective of generating precise and practical mathematical tools for quantifying and comparing network topologies macroscopically, beyond the level of degree statistics. Our family of ensembles can produce graphs with any prescribed degree distribution and any degree-degree correlation function, its control parameters can be calculated fully analytically, and as a result we can calculate (asymptotically) formulae for entropies and complexities, and for information-theoretic distances between networks, expressed directly and explicitly in terms of their measured degree distribution and degree correlations.Comment: 25 pages, 3 figure

    An evolving network model with community structure

    Get PDF
    Many social and biological networks consist of communities—groups of nodes within which connections are dense, but between which connections are sparser. Recently, there has been considerable interest in designing algorithms for detecting community structures in real-world complex networks. In this paper, we propose an evolving network model which exhibits community structure. The network model is based on the inner-community preferential attachment and inter-community preferential attachment mechanisms. The degree distributions of this network model are analysed based on a mean-field method. Theoretical results and numerical simulations indicate that this network model has community structure and scale-free properties

    Maximal entropy random walk in community finding

    Full text link
    The aim of this paper is to check feasibility of using the maximal-entropy random walk in algorithms finding communities in complex networks. A number of such algorithms exploit an ordinary or a biased random walk for this purpose. Their key part is a (dis)similarity matrix, according to which nodes are grouped. This study encompasses the use of the stochastic matrix of a random walk, its mean first-passage time matrix, and a matrix of weighted paths count. We briefly indicate the connection between those quantities and propose substituting the maximal-entropy random walk for the previously chosen models. This unique random walk maximises the entropy of ensembles of paths of given length and endpoints, which results in equiprobability of those paths. We compare performance of the selected algorithms on LFR benchmark graphs. The results show that the change in performance depends very strongly on the particular algorithm, and can lead to slight improvements as well as significant deterioration.Comment: 7 pages, 4 figures, submitted to European Physical Journal Special Topics following the 4-th Conference on Statistical Physics: Modern Trends and Applications, July 3-6, 2012 Lviv, Ukrain

    Optimal network topologies: Expanders, Cages, Ramanujan graphs, Entangled networks and all that

    Full text link
    We report on some recent developments in the search for optimal network topologies. First we review some basic concepts on spectral graph theory, including adjacency and Laplacian matrices, and paying special attention to the topological implications of having large spectral gaps. We also introduce related concepts as ``expanders'', Ramanujan, and Cage graphs. Afterwards, we discuss two different dynamical feautures of networks: synchronizability and flow of random walkers and so that they are optimized if the corresponding Laplacian matrix have a large spectral gap. From this, we show, by developing a numerical optimization algorithm that maximum synchronizability and fast random walk spreading are obtained for a particular type of extremely homogeneous regular networks, with long loops and poor modular structure, that we call entangled networks. These turn out to be related to Ramanujan and Cage graphs. We argue also that these graphs are very good finite-size approximations to Bethe lattices, and provide almost or almost optimal solutions to many other problems as, for instance, searchability in the presence of congestion or performance of neural networks. Finally, we study how these results are modified when studying dynamical processes controlled by a normalized (weighted and directed) dynamics; much more heterogeneous graphs are optimal in this case. Finally, a critical discussion of the limitations and possible extensions of this work is presented.Comment: 17 pages. 11 figures. Small corrections and a new reference. Accepted for pub. in JSTA

    Enumerating Isolated Cliques in Temporal Networks

    Full text link
    Isolation is a concept from the world of clique enumeration that is mostly used to model communities that do not have much contact to the outside world. Herein, a clique is considered isolated if it has few edges connecting it to the rest of the graph. Motivated by recent work on enumerating cliques in temporal networks, we lift the isolation concept to this setting. We discover that the addition of the time dimension leads to six distinct natural isolation concepts. Our main contribution is the development of fixed-parameter enumeration algorithms for five of these six clique types employing the parameter "degree of isolation". On the empirical side, we implement and test these algorithms on (temporal) social network data, obtaining encouraging preliminary results

    Bethe-Peierls approximation and the inverse Ising model

    Full text link
    We apply the Bethe-Peierls approximation to the problem of the inverse Ising model and show how the linear response relation leads to a simple method to reconstruct couplings and fields of the Ising model. This reconstruction is exact on tree graphs, yet its computational expense is comparable to other mean-field methods. We compare the performance of this method to the independent-pair, naive mean- field, Thouless-Anderson-Palmer approximations, the Sessak-Monasson expansion, and susceptibility propagation in the Cayley tree, SK-model and random graph with fixed connectivity. At low temperatures, Bethe reconstruction outperforms all these methods, while at high temperatures it is comparable to the best method available so far (Sessak-Monasson). The relationship between Bethe reconstruction and other mean- field methods is discussed
    corecore