80 research outputs found

    Development of a PbWO4 Detector for Single-Shot Positron Annihilation Lifetime Spectroscopy at the GBAR Experiment

    Get PDF
    We have developed a PbWO4 (PWO) detector with a large dynamic range to measure the intensity of a positron beam and the absolute density of the ortho-positronium (o-Ps) cloud it creates. A simulation study shows that a setup based on such detectors may be used to determine the angular distribution of the emission and reflection of o-Ps to reduce part of the uncertainties of the measurement. These will allow to improve the precision in the measurement of the cross-section for the (anti)hydrogen formation by (anti)proton-positronium charge exchange and to optimize the yield of antihydrogen ion which is an essential parameter in the GBAR experiment

    BASE-STEP: A transportable antiproton reservoir for fundamental interaction studies

    Full text link
    Currently, the only worldwide source of low-energy antiprotons is the AD/ELENA facility located at CERN. To date, all precision measurements on single antiprotons have been conducted at this facility and provide stringent tests of the fundamental interactions and their symmetries. However, the magnetic field fluctuations from the facility operation limit the precision of upcoming measurements. To overcome this limitation, we have designed the transportable antiproton trap system BASE-STEP to relocate antiprotons to laboratories with a calm magnetic environment. We anticipate that the transportable antiproton trap will facilitate enhanced tests of CPT invariance with antiprotons, and provide new experimental possibilities of using transported antiprotons and other accelerator-produced exotic ions. We present here the technical design of the transportable trap system. This includes the transportable superconducting magnet, the cryogenic inlay consisting of the trap stack and the detection systems, and the differential pumping section to suppress the residual gas flow into the cryogenic trap chamber.Comment: To be submitted to Rev. Sci. Instrument

    Ultra thin polymer foil cryogenic window for antiproton deceleration and storage

    Full text link
    We present the design and characterisation of a cryogenic window based on an ultra-thin aluminised PET foil at T < 10K, which can withstand a pressure difference larger than 1bar at a leak rate < 1×1091\times 10^{-9} mbar\cdot l/s. Its thickness of approximately 1.7 μ\mum makes it transparent to various types of particles over a broad energy range. To optimise the transfer of 100keV antiprotons through the window, we tested the degrading properties of different aluminium coated PET foils of thicknesses between 900nm and 2160nm, concluding that 1760nm foil decelerates antiprotons to an average energy of 5 keV. We have also explicitly studied the permeation as a function of coating thickness and temperature, and have performed extensive thermal and mechanical endurance and stress tests. Our final design integrated into the experiment has an effective open surface consisting of 7 holes with 1 mm diameter and will transmit up to 2.5% of the injected 100keV antiproton beam delivered by the AD/ELENA-facility of CERN

    A 16 Parts per Trillion Comparison of the Antiproton-to-Proton q/m Ratios

    Full text link
    The Standard Model (SM) of particle physics is both incredibly successful and glaringly incomplete. Among the questions left open is the striking imbalance of matter and antimatter in the observable universe which inspires experiments to compare the fundamental properties of matter/antimatter conjugates with high precision. Our experiments deal with direct investigations of the fundamental properties of protons and antiprotons, performing spectroscopy in advanced cryogenic Penning-trap systems. For instance, we compared the proton/antiproton magnetic moments with 1.5 ppb fractional precision, which improved upon previous best measurements by a factor of >3000. Here we report on a new comparison of the proton/antiproton charge-to-mass ratios with a fractional uncertainty of 16ppt. Our result is based on the combination of four independent long term studies, recorded in a total time span of 1.5 years. We use different measurement methods and experimental setups incorporating different systematic effects. The final result, (q/m)p/(q/m)pˉ-(q/m)_{\mathrm{p}}/(q/m)_{\bar{\mathrm{p}}} = 1.000000000003(16)1.000\,000\,000\,003 (16), is consistent with the fundamental charge-parity-time (CPT) reversal invariance, and improves the precision of our previous best measurement by a factor of 4.3. The measurement tests the SM at an energy scale of 1.9610271.96\cdot10^{-27}\,GeV (C..L.. 0.68), and improves 10 coefficients of the Standard Model Extension (SME). Our cyclotron-clock-study also constrains hypothetical interactions mediating violations of the clock weak equivalence principle (WEPcc_\text{cc}) for antimatter to a level of αg1<1.8107|\alpha_{g}-1| < 1.8 \cdot 10^{-7}, and enables the first differential test of the WEPcc_\text{cc} using antiprotons \cite{hughes1991constraints}. From this interpretation we constrain the differential WEPcc_\text{cc}-violating coefficient to αg,D1<0.030|\alpha_{g,D}-1|<0.030

    Agri-Environmental Policy Measures in Israel: The Potential of Using Market-Oriented Instruments

    Get PDF
    This paper examines the possibilities of developing agri-environmental policy measures in Israel, focusing on market-oriented instruments. A conceptual framework for developing agri-environmental policy measures is presented, first in very broad lines (mandatory regulations, economic instruments and advisory measures) and subsequently focusing on economic instruments, and specifically, on market-oriented ones. Two criteria of choice between the measures are suggested: their contribution to improving the effectiveness of the policy; and the feasibility of their implementation. This is the framework used for analyzing agri-environmental measures in Israel. Israel currently implements a mix of mandatory regulations, economic instruments and advisory measures to promote the agri-environment. The use of additional economic instruments may improve the effectiveness of the policy. When comparing the effectiveness of various economic measures, we found that the feasibility of implementation of market-oriented instruments is greater, due to the Israeli public’s preference for strengthening market orientation in the agricultural sector. Four market-oriented instruments were practiced in a pilot project conducted in an Israeli rural area. We found that in this case study, the institutional feasibility and acceptance by stakeholders were the major parameters influencing the implementation of the market-oriented instruments, whereas the instruments’ contribution to enhancing the ecological or economic effectiveness were hardly considered by the stakeholders as arguments in favor of their use

    Optimal Afforestation Contracts with Asymmetric Information on Private Environmental Benefits

    Full text link
    corecore