5 research outputs found

    GDNF Increases Inhibitory Synaptic Drive on Principal Neurons in the Hippocampus via Activation of the Ret Pathway

    Get PDF
    Glial cell line-derived neurotrophic factor (GDNF) has been shown to counteract seizures when overexpressed or delivered into the brain in various animal models of epileptogenesis or chronic epilepsy. The mechanisms underlying this effect have not been investigated. We here demonstrate for the first time that GDNF enhances GABAergic inhibitory drive onto mouse pyramidal neurons by modulating postsynaptic GABAA receptors, particularly in perisomatic inhibitory synapses, by GFRα1 mediated activation of the Ret receptor pathway. Other GDNF receptors, such as NCAM or Syndecan3, are not contributing to this effect. We observed similar alterations by GDNF in human hippocampal slices resected from epilepsy patients. These data indicate that GDNF may exert its seizure-suppressant action by enhancing GABAergic inhibitory transmission in the hippocampal network, thus counteracting the increased excitability of the epileptic brain. This new knowledge can contribute to the development of novel, more precise treatment strategies based on a GDNF gene therapy approach

    Synaptic proteomics reveal distinct molecular signatures of cognitive change and C9ORF72 repeat expansion in the human ALS cortex

    Get PDF
    Increasing evidence suggests synaptic dysfunction is a central and possibly triggering factor in Amyotrophic Lateral Sclerosis (ALS). Despite this, we still know very little about the molecular profile of an ALS synapse. To address this gap, we designed a synaptic proteomics experiment to perform an unbiased assessment of the synaptic proteome in the ALS brain. We isolated synaptoneurosomes from fresh-frozen post-mortem human cortex (11 controls and 18 ALS) and stratified the ALS group based on cognitive profile (Edinburgh Cognitive and Behavioural ALS Screen (ECAS score)) and presence of a C9ORF72 hexanucleotide repeat expansion (C9ORF72-RE). This allowed us to assess regional differences and the impact of phenotype and genotype on the synaptic proteome, using Tandem Mass Tagging-based proteomics. We identified over 6000 proteins in our synaptoneurosomes and using robust bioinformatics analysis we validated the strong enrichment of synapses. We found more than 30 ALS-associated proteins in synaptoneurosomes, including TDP-43, FUS, SOD1 and C9ORF72. We identified almost 500 proteins with altered expression levels in ALS, with region-specific changes highlighting proteins and pathways with intriguing links to neurophysiology and pathology. Stratifying the ALS cohort by cognitive status revealed almost 150 specific alterations in cognitively impaired ALS synaptic preparations. Stratifying by C9ORF72-RE status revealed 330 protein alterations in the C9ORF72-RE +ve group, with KEGG pathway analysis highlighting strong enrichment for postsynaptic dysfunction, related to glutamatergic receptor signalling. We have validated some of these changes by western blot and at a single synapse level using array tomography imaging. In summary, we have generated the first unbiased map of the human ALS synaptic proteome, revealing novel insight into this key compartment in ALS pathophysiology and highlighting the influence of cognitive decline and C9ORF72-RE on synaptic composition. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s40478-022-01455-z

    Circulating Survivin Levels in Obstructive Sleep Apnoea

    No full text
    INTRODUCTION: Obstructive sleep apnoea (OSA) is characterised by a low-grade systemic and airway inflammation; however, the regulatory mechanisms of inflammation are poorly explored. Survivin (Birc5) is an anti-apoptotic protein which inhibits Type 1 inflammation; however, this molecule has not been investigated in OSA. METHODS: Forty-five patients with OSA and 31 non-OSA control subjects were involved. Venous blood was collected for plasma survivin measurements before and after diagnostic overnight polysomnography. Plasma survivin levels were compared between the two groups and correlated to OSA severity and comorbidities. RESULTS: Plasma survivin levels were lower in OSA in the evening (27.6 +/- 89.9 vs. 108.3 +/- 161.2 pg/ml, p 0.05). Low plasma survivin concentrations were associated with high BMI (r = - 0.35), high CRP (r = - 0.31), low HDL cholesterol (r = 0.24) and high triglyceride levels (r = - 0.24, all p < 0.05). CONCLUSION: Plasma survivin levels are reduced in OSA, relate to disease severity, and are associated with high CRP levels. This suggests an impaired immunoregulation in this disorder which needs to be studied in further detail
    corecore