361 research outputs found

    Trigonometric pulse envelopes for laser-induced quantum dynamics

    Get PDF
    We relate powers of trigonometric functions to Gaussians by proving that properly truncated cosn functions converge to a Gaussian as n tends to infinity. For an application, we analyse the laser-induced population transfer |X1Σ+ → |A1Πx in a two-level model system of aluminium monochloride (AlCl) with fixed nuclei. We apply linearly x-polarized ultraviolet laser pulses with a trigonometric envelope function, whose square has full width at half-maximum of 2.5 fs and 5.0 fs. Studying population dynamics and optimized laser parameters, we find that the optimal field amplitude for trigonometric pulses with n = 20 and n = 1000 has a relative difference of 1%, which is below experimental resolution

    Initial-state dependence of coupled electronic and nuclear fluxes in molecules

    Get PDF
    We demonstrate that coupled electronic and nuclear fluxes in molecules can strongly depend on the initial state preparation. Starting the dynamics of an aligned D2 + molecule at two different initial conditions, the inner and the outer turning points, we observe qualitatively different oscillation patterns of the nuclear fluxes developing after 30 fs. This corresponds to different orders of magnitude bridged by the time evolution of the nuclear dispersion. Moreover, there are attosecond time intervals within which the electronic fluxes do not adapt to the nuclei motion depending on the initial state. These results are inferred from two different approaches for the numerical flux simulation, which are both in good agreement

    Fast focus field calculations

    Get PDF
    We present a method for fast calculation of the electromagnetic field near the focus of an objective with a high numerical aperture (NA). Instead of direct integration, the vectorial Debye diffraction integral is evaluated with the fast Fourier transform for calculating the electromagnetic field in the entire focal region. We generalize this concept with the chirp z transform for obtaining a flexible sampling grid and an additional gain in computation speed. Under the conditions for the validity of the Debye integral representation, our method yields the amplitude, phase and polarization of the focus field for an arbitrary paraxial input field in the aperture of the objective. Our fast calculation method is particularly useful for engineering the point-spread function or for fast image deconvolution. We present several case studies by calculating the focus fields of high NA oil immersion objectives for various amplitude, polarization and phase distributions of the input field. In addition, the calculation of an extended polychromatic focus field generated by a Bessel beam is presented. This extended focus field is of particular interest for Fourier domain optical coherence tomography because it preserves a lateral resolution of a few micrometers over an axial distance in the millimeter range

    Combination Service for Time-variable Gravity Fields: operational GRACE-FO combination and validation of Chinese GRACE time-series

    Get PDF
    The Combination Service for Time-variable Gravity Fields (COST-G) of the International Association of Geodesy (IAG) provides combined monthly gravity fields of its associated and partner Analysis Centers (ACs). In November 2020, the combination of monthly GRACE-FO gravity fields started its operational mode, providing consolidated L2 (spherical harmonics) and L3 (gridded and post-processed) products with a latency of currently 3 months. We present an overview and quality assessment of the available products. COST-G aims at the extension of its service to include further GRACE and GRACE-FO analysis centers. In January 2020 a collaboration with representatives of five Chinese ACs was initiated, who provided GRACE time-series according to the COST-G requirements. We present the results of a test combination with the Chinese AC models, including comparison and quality assessment of all contributing time-series and validation of the combined gravity fields

    Na+ imaging reveals little difference in action potential–evoked Na+ influx between axon and soma

    Get PDF
    Author Posting. © The Authors, 2010. This is the author's version of the work. It is posted here by permission of Nature Publishing Group for personal use, not for redistribution. The definitive version was published in Nature Neuroscience 13 (2010): 852-860, doi:10.1038/nn.2574.In cortical pyramidal neurons, the axon initial segment (AIS) plays a pivotal role in synaptic integration. It has been asserted that this property reflects a high density of Na+ channels in AIS. However, we here report that AP–associated Na+ flux, as measured by high–speed fluorescence Na+ imaging, is about 3 times larger in the rat AIS than in the soma. Spike evoked Na+ flux in the AIS and the first node of Ranvier is about the same, and in the basal dendrites it is about 8 times lower. At near threshold voltages persistent Na+ conductance is almost entirely axonal. Finally, we report that on a time scale of seconds, passive diffusion and not pumping is responsible for maintaining transmembrane Na+ gradients in thin axons during high frequency AP firing. In computer simulations, these data were consistent with the known features of AP generation in these neurons.Supported by US– Israel BSF Grant (2003082), Grass Faculty Grant from the MBL, NIH Grant (NS16295), Multiple Sclerosis Society Grant (PP1367), and a fellowship from the Gruss Lipper Foundation
    • …
    corecore