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Abstract
We relate powers of trigonometric functions to Gaussians by proving that properly truncated
cosn functions converge to a Gaussian as n tends to infinity. For an application, we analyse the
laser-induced population transfer |X 1�+〉 → |A 1�x〉 in a two-level model system of
aluminium monochloride (AlCl) with fixed nuclei. We apply linearly x-polarized ultraviolet
laser pulses with a trigonometric envelope function, whose square has full width at
half-maximum of 2.5 fs and 5.0 fs. Studying population dynamics and optimized laser
parameters, we find that the optimal field amplitude for trigonometric pulses with n = 20 and
n = 1000 has a relative difference of 1%, which is below experimental resolution.

1. Introduction

Experiments often use Gaussian laser pulses. Hence,
for quantum dynamics simulations, various pulse envelope
functions of Gaussian form are employed: sin2 pulses [1–12]
or equivalent cos2 pulses [13–15], sin4 pulses [16], sin2n pulses
[17], cos20 pulses [18–22], sech pulses [17, 23], triangular
pulses [3], trapezoidal pulses [24] or time-cutted Gaussian
pulses [3, 24–29]. This variety reflects different rankings
of somehow incompatible modelling requirements as finite
pulse duration, higher order differentiability or a manageable
analytical expression.

It is our aim and main contribution here to mathematically
relate trigonometric pulse envelopes with Gaussian functions.
We prove that in the limit n → ∞ suitably truncated
cosn functions converge to a Gaussian, whose square has
the same full width at half-maximum. The trigonometric
pulse envelopes have a finite support in the time domain and
gain higher order differentiability when the exponent value n
increases.

As an exemplary application, we choose a laser-induced
molecular transition. We consider a simple two-level model
for the linear molecule aluminium monochloride (AlCl) with
pre-orientation in the z-direction [22, 30, 31] and study
the laser-induced optimal total population transfer from the
electronic ground state |X 1�+〉 to the first electronic excited
state |A 1�x〉. We use linearly x-polarized ultraviolet laser
pulses with trigonometric envelope, whose square has full

width at half-maximum of 2.5 fs [21] and 5.0 fs. On the short
timescale considered, we assume that the nuclei stay fixed
and that other electronic states can be neglected to obtain a
two-level ordinary differential system. For this system, we
numerically explore the influence of the cosn envelope on
the population dynamics and on optimized laser parameters
for achieving maximal population transfer. We also mention
that recent work on AlCl [21] and BeO [22] has addressed
strong electronic ring currents of the first electronic degenerate
excited states |A 1�±〉 and associated strong induced magnetic
fields generated by circularly polarized laser pulses with
trigonometric envelope.

The paper is organized as follows. Section 2 defines the
trigonometric envelopes, discusses their limiting behaviour
and their spectral width. Then, section 3 introduces the
model for the electronic excitation of AlCl. Section 4 collects
the numerical results, and section 5 offers some concluding
remarks. The mathematical proofs are given in appendices A,
B and C.

2. Trigonometric pulse envelopes

2.1. Laser pulse

For the modelling of a linearly x-polarized laser pulse one starts
by defining a time-dependent vector-potential A(t) = Ax(t)ex

that has a non-vanishing component only in the x-direction.
Denoting the laser amplitude by E0, the carrier frequency by
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ω and the carrier envelope phase by η ∈ [0, 2π), we set

Ax(t) = −E0

ω
sn(t) sin(ωt + η).

For the slowly varying envelope function sn(t) : (−∞,∞) →
[0, 1] one has to make a choice. Here, we investigate
trigonometric pulse envelopes

sn(t) =
{

cosn
(

πt
Tn

)
for |t | � Tn

2 ,

0 for |t | > Tn

2

(1)

with exponent n > 0. We define the n-dependent total pulse
duration Tn > 0,

Tn = πτ

fn

, fn = 2 arccos
(
2− 1

2n

)
,

such that τ > 0 is the full width at half-maximum of s2
n(t),

that is, s2
n(τ/2) = 1

2 . We note that sn(t) for n > 1 is
continuously differentiable. As in [13, 18–23, 28, 29], the
time-dependent electric field E(t) = Ex(t)ex is derived from
the vector potential A(t) by setting

Ex(t) = − d

dt
Ax(t)

= E0sn(t) cos(ωt + η) +
E0

ω

[
d

dt
sn(t)

]
sin(ωt + η). (2)

By construction, the zero frequency or direct current
component of the electric field vanishes∫ ∞

−∞
E(t) dt = 0,

which is in accordance with the far-field approximation of
Maxwell’s equations [29, 32]. Moreover, the electric field
E(t) for n > 2 is continuously differentiable.

2.2. Limiting behaviour

We first discuss the behaviour of the trigonometric pulse
envelopes sn(t) when passing to the limit n → ∞, which
links it to the conventional Gaussian envelope functions. Then,
we consider the regime of large numbers of laser cycles and
interpret τ as the effective pulse duration.

A Gaussian function s(t) : (−∞,∞) → [0, 1], such that
τ is the full width at half-maximum of its square, has the
form s(t) = exp(−2 ln(2)t2/τ 2). In appendix A, we prove the
convergence of

e−t2 = lim
n→∞ cosn

(√
2

n
t

)
, s(t) = lim

n→∞ sn(t),

which both are uniform in every bounded time interval |t | � R

with R > 0. The plots in figures 1 and 2 illustrate that the
convergence is rather fast. For n = 20, the maximal deviation
between the trigonometric envelope and the Gaussian is
already 0.0077.

The full width at half-maximum τ of the squared envelope
can be considered as the effective pulse duration. Let ε0

and c denote the permittivity of vacuum and speed of light,
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Figure 1. Top: Gaussian envelope s(t) (solid) and trigonometric
envelopes sn(t) for n = 2, 5, 20 (dotted, dashed, dash-dotted).
Bottom: squares of the Gaussian envelope s2(t) (solid) and
trigonometric envelopes s2

n(t) for n = 2, 5, 20 (dotted, dashed,
dash-dotted). All four functions have the same full width at
half-maximum τ = 5.0 fs.
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Figure 2. Top: maximal deviation between Gaussian envelope s(t)
and trigonometric envelope sn(t) depending on log10 n. For n = 20,
the maximal deviation is 0.0077. Bottom: total pulse duration Tn

subject to log10 n for τ = 2.5 fs (solid) and τ = 5.0 fs (dashed). The
vibrational period of AlCl Tvib = 69 fs is larger than T20 = 21 fs and
T20 = 42 fs for τ = 2.5 fs and τ = 5.0 fs, respectively.

respectively. Then, the envelope of the time-dependent
intensity I (t) = cε0E2

x (t) has approximately the same full

2
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width at half-maximum as s2
n(t), if the number of laser cycles

is large. Indeed, for large carrier frequencies ω, the electric
field and the intensity satisfy

Ex(t) ≈ E0sn(t) cos(ωt + η),

I (t) ≈ cε0E2
0 s2

n(t) cos2(ωt + η).

Thus, the full width at half-maximum of s2
n(t) and of the

envelope of I (t) approximately coincide.

2.3. Spectral width

We denote the Fourier transform of the trigonometric envelope
by

ŝn(k) = 1√
2π

∫ ∞

−∞
sn(t) e−ikt dt.

Since limn→∞ sn(t) = s(t) holds uniformly on bounded time
intervals, the Fourier transform converges pointwise to a
Gaussian. That is,

lim
n→∞ ŝn(k) = ŝ(k) = 1√

2π

∫ ∞

−∞
s(t) e−ikt dt

= τ

2
√

ln(2)
e−k2τ 2/[8 ln(2)]

for all k ∈ (−∞,∞). The Fourier transform can be expressed
in closed form in terms of the Gamma function. We have for
all real numbers n > 0 and k ∈ (−∞,∞)

ŝn(k) = 2−n−1/2√π 	(n + 1) τ

fn	
(
1 + n

2 − kτ
2fn

)
	
(
1 + n

2 + kτ
2fn

) . (3)

Such Gamma function formulae are discussed for example in
Titchmarsh’s monograph on Fourier integrals [33], see also
appendix B. For n ∈ N the Fourier transform can be rewritten
with trigonometric functions as

ŝn(k) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−
2−n−3/2n!τ 2k sin

(
πkτ
2fn

)
√

πf 2
n

∏ n
2
j=0

[
j 2 − (

kτ
2fn

)2] , n even,

2−n−1/2n!τ cos
(

πkτ
2fn

)
√

πfn

∏ n
2 − 1

2
j=0

[(
j + 1

2

)2 − (
kτ
2fn

)2] , n odd,

see appendix C. The maximal deviation between ŝn(k) and
ŝ(k) is found at k = 0, and the corresponding relative deviation
for n = 20 is |ŝ20(0) − ŝ(0)|/|ŝ(0)| = 0.0096, illustrating the
fast convergence of the Fourier transform of the trigonometric
envelope.

The full width at half-maximum of ŝ2(k) is easily
evaluated as κ = 4 ln 2/τ , while for determining the full
width at half-maximum κn of ŝ2

n(k) one has to numerically
solve a nonlinear equation. Table 1 lists the numerical
coefficients cn = κnτ of trigonometric envelopes as well
as c = κτ of the Gaussian envelope. Note that cn and c
are independent of the effective pulse duration τ because κn

and κ are inversely proportional to τ . We obtain the relative
difference |c20 − c|/|c| = 0.0193, indicating that the spectral
width 	n = κnh̄ = cnh̄/τ converges to 	 = κh̄ = ch̄/τ

slightly slower than the maximal deviation of the Fourier
transforms.

Table 1. Numerical coefficients cn = κnτ of the trigonometric
envelope and c = κτ of the Gaussian envelope for determining the
spectral widths 	n = cnh̄/τ and 	 = ch̄/τ where κn and κ are the
full widths at half-maximum of ŝ2

n(k) and ŝ2(k), respectively.

n cn n cn

1 3.735 24 12 2.862 00
2 3.295 24 13 2.855 09
3 3.127 72 14 2.849 18
4 3.040 54 15 2.844 05
5 2.987 38 16 2.839 57
6 2.951 69 17 2.835 61
7 2.926 11 18 2.832 10
8 2.906 89 19 2.828 96
9 2.891 93 20 2.826 13

10 2.879 95 . . . . . .
11 2.870 16 ∞ 2.772 59

3. Off-diagonal two-level systems

We first discuss our modelling assumptions for electronic
excitation by linearly x-polarized laser pulses. Then, we apply
the model to the diatomic molecule AlCl with the molecular
symmetry C∞v pre-oriented in the z-direction; see also
[22, 30, 31].

3.1. Derivation of the model

We assume that the molecule’s electronic Hamilton operator
has two eigenstates with equal equilibrium configuration of the
molecule. Orbital symmetries and gap sizes in the electronic
spectrum allow linearly x-polarized laser excitation only
between these two states. Moreover, the vibrational period
of the molecule is considerably longer than the effective pulse
duration τ , and one assumes the nuclei fixed at the equilibrium
configuration. We denote the electronic Hamiltonian for fixed
nuclei by Hel. The two eigenstates under consideration solve
the electronic eigenvalue problem Hel|�1〉 = E1|�1〉 and
Hel|�2〉 = E2|�2〉. If xi and Xj are the x-component of the
position of the ith electron and j th nucleus, N and N̂ the total
number of electrons and nuclei of the molecule, −e and Zj e the
electronic charge and charge of the j th nucleus, respectively,
then the x-component of the dipole operator is written as

Mx = −e

N∑
i=1

xi + e

N̂∑
j=1

ZjXj .

We additionally assume that the transition dipole matrix is
real-symmetric and off-diagonal,(〈�1|Mx |�1〉 〈�1|Mx |�2〉

〈�2|Mx |�1〉 〈�2|Mx |�2〉
)

=:

(
0 M

M 0

)
.

Then, the electric dipole approximation of the laser-driven
electron dynamics starting in the electronic eigenstate |�1〉 is
given by the time-dependent electronic Schrödinger equation

ih̄
d

dt
|�(t)〉 = [Hel − MxEx(t)] |�(t)〉,

|�(−Tn/2)〉 = |�1〉,
(4)

3
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Table 2. Optimized laser parameters, i.e. laser amplitude E0 and laser frequency ω, for maximal population transfer in AlCl from
|�1〉 = |X 1�+〉 to |�2〉 = |A 1�x〉, depending on the effective pulse duration τ and the exponent of the trigonometric envelope n. Both
states are separated by an excitation energy of h̄ω̂ = 4.79 eV. The phase is always fixed as η = π/2.

n = 2 n = 5 n = 20 n = 1000

τ E0 h̄ω E0 h̄ω E0 h̄ω E0 h̄ω

(fs) (GV m−1) (eV) (GV m−1) (eV) (GV m−1) (eV) (GV m−1) (eV)

2.5 8.512 4.7495 8.075 4.7558 7.852 4.7589 7.779 4.7598
5.0 4.273 4.7799 4.051 4.7815 3.937 4.7822 3.901 4.7825

where the electric field Ex(t) is defined in (2) using the
trigonometric envelope sn(t) given in (1). We insert the ansatz
|�(t)〉 = C1(t)|�1〉 + C2(t)|�2〉 into the time-dependent
Schrödinger equation (4). Due to the assumption that the
electronic transition is only possible between two states under
consideration, we obtain an ordinary differential equation for
the time-dependent coefficient vector C(t) = (C1(t), C2(t))

T ,

ih̄
d

dt
C(t) =

[(
E1 0
0 E2

)
− MEx(t)

(
0 1
1 0

)]
C(t),

C(−Tn/2) =
(

1
0

)
.

(5)

3.2. Application to a model system of AlCl

In the following, we use quantum chemistry results for AlCl
by Langhoff et al [34]. The ground state |�1〉 = |X 1�+〉
and the first excited singlet state |�2〉 = |A 1�x〉 satisfy our
assumptions. Indeed, the excitation energy from |X 1�+〉
to |A 1�x〉 is h̄ω̂ = E2 − E1 = 4.79 eV. The excitation
energy for the next excited 1�x state is considerably higher,
namely 8.56 eV, see [21]. Moreover, starting from the ground
state |X 1�+〉 and using linearly x-polarized laser pulses, the
populations of excited degenerates states 1�y are always zero,
and direct dipole transitions from the ground state |X 1�+〉 to
other excited states of type �+,�,
, . . . are not allowed. The
equilibrium bond length of the both states |X 1�+〉 and |A 1�x〉
is almost equal (RX = 4.055 a0 and RA = 4.067 a0).

The heavy molecule AlCl has the experimental vibration
frequency of ωe = 481 hc cm−1 [35] with the corresponding
period of Tvib = 69 fs. We choose the effective pulse
duration τ = 2.5 fs or τ = 5.0 fs. Figure 2 illustrates that
for n = 20 the total pulse duration is Tn = 21 fs or Tn = 42 fs,
respectively. Hence, the nuclei are assumed to stay fixed
during the pulse. By the symmetry of 1�+ and 1�x states,
the transition dipole matrix is real-symmetric and off-diagonal
with M = 1.33 ea0. Therefore, the electron dynamics of the
z-oriented AlCl molecule driven by a linearly x-polarized laser
pulse may be modelled by an off-diagonal two-level system of
the form (5).

4. Numerical results

We concentrate on the regime of large numbers of laser cycles,
where total population transfer from |X 1�+〉 to |A 1�x〉 is
only achieved for a laser frequency ω close to the excitation
frequency ω̂ and for a laser amplitude E0 close to the reference
amplitude Ê0 = 2πh̄/(MT2) of the π -pulse with n = 2, that

is, Ê0 = 4.28 GV m−1 and Ê0 = 8.56 GV m−1 for τ = 2.5 fs
and τ = 5.0 fs, respectively, see [36]. We set η = π/2 and
optimize the two remaining parameters E0 and ω of the electric
field for maximal transfer from |X 1�+〉 to |A 1�x〉 at the end
of the pulse at time t = Tn/2. We therefore numerically
solve the differential system (5) for various exponent values
n = 2, 5, 20, 1000 and effective pulse durations τ = 2.5 fs
and τ = 5.0 fs. We use a fourth-order Runge-Kutta method,
which in all calculations numerically converges for a step size
of 1 as.

The resulting optimal parameters are given in table 2. For
growing exponent values n, there is a monotonous increase of
the optimal laser frequency ω towards the excitation frequency
ω̂ = 4.79 eV /h̄. The relative difference between the values for
n = 20 and n = 1000 is less than one permille. Moreover, the
frequencies for the longer pulse with τ = 5.0 fs are closer to
the excitation frequency ω̂ than those for the shorter pulse with
τ = 2.5 fs, since the error depends on the size of the second
term of the electric field in (2), which is proportional to the
inverse of τ . The optimal laser amplitude E0 monotonously
decreases with growing n, because the total pulse duration Tn

increases with growing n. The relative difference between
the values for n = 20 and n = 1000 is 1%, which is below
experimental resolution. As for the reference π pulses, the
amplitudes for the τ = 2.5 fs pulse are roughly twice those
for the τ = 5.0 fs pulse.

Figure 3 illustrates the time evolution of the populations
PA(t) = |C2(t)|2 of the first excited state |A 1�x〉 for
four different classes of pulse envelopes. Qualitatively, all
plots show the same monotonous step-like increase up to a
population of 98 to almost 100%. For the longer pulses with
τ = 5.0 fs the number of steps is approximately twice the
number for the shorter pulses with τ = 2.5 fs. In figure 3(a),
the dynamics are plotted for laser parameters, which are
optimal for the pulse with n = 1000. The four curves get closer
to each other for growing values of n. The maximal deviation
between the n = 2 and n = 1000 population is around 5%.
Figure 3(b) shows the corresponding results, when the laser
parameters are chosen in an optimal way for each exponent n
independently. In this case, the curves almost match. Figure 4
plots the final populations PA(Tn/2) of the first excited state
versus log10 n. The laser parameters are the optimal ones for
n = 1000. The results for τ = 2.5 fs and τ = 5.0 fs agree
within graphical resolution. For n = 20, for example, the final
population is 99.98%.
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Figure 3. Time-dependent populations PA(t) = |C2(t)|2 of the first excited state |A 1�x〉 for τ = 2.5 fs (top) and τ = 5.0 fs (bottom) and
for various exponent values n = 2, 5, 20, 1000 (dotted, dashed, dash-dotted, solid). On the left-hand side, the chosen laser parameters
maximize the population transfer from |X 1�+〉 to |A 1�x〉 for the trigonometric pulse with n = 1000. On the right-hand side, the parameters
are optimized for each exponent value n = 2, 5, 20, 1000.
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Figure 4. Final populations PA(Tn/2) = |C2(Tn/2)|2 of the first
excited state |A 1�x〉 for τ = 2.5 fs and τ = 5.0 fs versus log10 n.
The results agree within graphical resolution. The laser parameters
are those which optimize the population transfer for n = 1000. For
n = 20, the final population is 0.9998.

5. Conclusions

We have related powers of trigonometric pulse envelopes to
Gaussian functions in the limit of the exponent n tending
to infinity. The trigonometric envelopes sn(t) combine the
advantages of modelling finite pulse duration with high-
order differentiability. We note that the nonnegative function
Kn(t) = sn(t)/(

√
2π ŝn(0)) can be interpreted as a normalized

probability density function with expectation value zero.
Therefore, the trigonometric envelopes could also serve in
nonparametric density estimation, where various choices of
kernels with finite support are discussed, see [37]. The
numerical experiments for the laser excitation of AlCl show a

regular and convergent behaviour with respect to the exponent
n. In the regime of large numbers of laser cycles, optimized
laser parameters for n = 20 and n = 1000 have a relative
difference of less than 1%, which is below experimental
resolution. Future work should explore the complementary
regime of few-cycle laser pulses.

Acknowledgments

We would like to thank J Manz (FU Berlin) and M Kitzler
(TU Wien) for stimulating discussions. Financial support by
the Deutsche Forschungsgemeinschaft (Sfb 450, TPC1 and
TPC5) is also gratefully acknowledged.

Appendix A. Convergence proofs

Proof. We prove the convergence of

e−t2 = lim
n→∞ cosn

(√
2

n
t

)
, (A.1)

which is uniform in |t | � R for all R > 0. By the infinite
product formula for the cosine

cos(t) =
∞∏

j=1

[
1 − 4t2

π2 (2j − 1)2

]
,

which converges uniformly in |t | � R, see for example [38],
we obtain

lim
n→∞ cosn

(√
2

n
t

)
= lim

n→∞

∞∏
j=1

[
1 − 8t2

nπ2 (2j − 1)2

]n

.
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A product
∏∞

j=1[1 + aj (x)] converges uniformly in x, if and
only if the series

∑∞
j=1 ln[1 + aj (x)] converges uniformly in x

[39]. Hence, the bound∣∣∣∣n ln

[
1 − 8t2

nπ2 (2j − 1)2

]∣∣∣∣ � 16t2

π2(2j − 1)2

for n sufficiently large implies uniform convergence of the
infinite product and consequently

lim
n→∞ cosn

(√
2

n
t

)
=

∞∏
j=1

lim
n→∞

[
1 − 8t2

nπ2 (2j − 1)2

]n

.

Since limn→∞ (1 + x/n)n = ex uniformly in |x| � R and∑∞
j=1 1/(2j − 1)2 = 3/4

∑∞
j=1 1/j 2 = π2/8, we get

lim
n→∞ cosn

(√
2

n
t

)
=

∞∏
j=1

exp

[
− 8t2

π2 (2j − 1)2

]

= exp

⎡
⎣−8t2

π2

∞∑
j=1

1

(2j − 1)2

⎤
⎦ = e−t2

uniformly in |t | � R. 	


We note that uniform convergence of the limit (A.1) is
needed for proving the convergence of the trigonometric pulse
envelopes to a Gaussian function. However, there is also a
more elementary argument for proving pointwise convergence
using l’Hospital’s rule, see [40].

Proof. It remains to prove the uniform convergence of s(t) =
limn→∞ sn(t) for |t | � R. Since fn = 2 arccos(2−1/(2n)) → 0
and Tn = πτ/fn → ∞ as n → ∞, one has R � Tn/2 for n
sufficiently large, and we only need to verify that

e−2 ln(2)t2/τ 2 = lim
n→∞ cosn

(
t

τ
fn

)

uniformly in |t | � R. By l’Hospital’s rule, limn→∞ n

(1 − 2−1/n) = ln(2) and

lim
n→∞

√
nfn = lim

n→∞
−(1 − 2−1/n)−1/22−1/2nn−2 ln(2)

− 1
2n−3/2

= 2 ln(2) lim
n→∞

2−1/2n√
n(1 − 2−1/n)

= 2
√

ln(2).

Then, we have uniformly in |t | � R∣∣∣∣cosn

(
t

τ
fn

)
− e−2 ln(2)t2/τ 2

∣∣∣∣
�
∣∣∣∣cosn

(
t

τ
fn

)
− e−(

√
n
2

t
τ
fn)

2

∣∣∣∣
+
∣∣e−(

√
n
2

t
τ
fn)

2 − e−2 ln(2)t2/τ 2 ∣∣ n→∞−→ 0,

where the first and second difference tend to zero because of
the uniform convergence in formula (A.1) and continuity of
the Gaussian function x �→ exp(−x2), respectively. 	


Appendix B. Fourier transform

One observes∫ πτ/2fn

−πτ/2fn

cosn

(
fnt

τ

)
e−ikt dt = τ

fn

∫ π/2

−π/2
cosn(θ) e−ikτ/fnθ dθ.

Using k′ = −kτ/fn, the formula for the Fourier transform (3)
is therefore equivalent to∫ π

2

− π
2

cosn(θ) eik′θ dθ = 2−nπ	(n + 1)

	
(
1 + n

2 + k′
2

)
	
(
1 + n

2 − k′
2

)
(B.1)

for all real numbers n > 0 and k′ ∈ (−∞,∞). This Gamma
function formula, however, is well known [41]. In [33],
Titchmarsh indicated that the formula may be obtained by
calculating ∫

(w + w−1)nwk′−1 dw,

along the contour, which is formed by joining −i and i by the
imaginary axis and by the right half of the unit circle.

Indeed, let 	 be the right half of the unit circle in counter-
clockwise orientation, 	δ the right half of the circle with
radius 0 < δ < 1 centred at the origin in counter-clockwise
orientation, 	+ and 	− the parts of the imaginary axis between
iδ and i respectively −iδ and −i. We take log w = log ρ + iθ
if w = ρ eiθ with θ ∈ (−π, π) and obtain∫

	

(w + w−1)nwk′−1 dw = i
∫ π/2

−π/2
(eiθ + e−iθ )n eik′θ dθ

= i2n

∫ π/2

−π/2
cosn(θ) eik′θ dθ.

Let k′ � n > 0. There exists C > 0 such that for all w ∈ 	δ .

|(w + w−1)nwk′−1| = |(w2 + 1)nwk′−n−1| � Cδk′−n−1.

Therefore, ∫
	δ

(w + w−1)nwk′−1 dw
δ→0−→ 0.

Moreover,∫
	±

(w + w−1)nwk′−1 dw =
∫

	±
(w2 + 1)nwk′−n−1 dw

=
∫ 1

δ

(−ρ2 + 1)nρk′−n−1 e±i(k′−n−1)π/2 e±iπ/2 dρ

δ→0−→ e±i(k′−n)π/2
∫ 1

0
(−ρ2 + 1)nρk′−n−1 dρ.

The latter integral can be rewritten using the Euler-Beta
function as

B(q, p) =
∫ 1

0
xp−1(1 − x)q−1 dx = 	(q)	(p)

	(q + p)

for p, q > 0, see [39]. Indeed,∫ 1

0
(1 − ρ2)nρk′−n−1 dρ = 1

2

∫ 1

0
(1 − x)nxk′/2−n/2−1 dx

= 1

2
B

(
k′

2
− n

2
, n + 1

)
,
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which is valid for n > −1. Therefore, the equality

0 =
∫

	

(w + w−1)nwk′−1 dw −
∫

	+

(w + w−1)nwk′−1 dw

−
∫

	δ

(w + w−1)nwk′−1 dw +
∫

	−
(w + w−1)nwk′−1 dw

implies for the limit δ → 0∫
	

(w + w−1)nwk′−1 dw

= 1

2
(ei(k′−n)π/2 − e−i(k′−n)π/2)B

(
k′

2
− n

2
, n + 1

)

= i sin

[
π

(
k′

2
− n

2

)]
	
(

k′
2 − n

2

)
	(n + 1)

	
(
1 + n

2 + k′
2

) .

Since 	(z)	(1 − z) = π/ sin(πz), see [39], one has

	

(
k′

2
− n

2

)
= π

sin
[
π
(

k′
2 − n

2

)]
	
(
1 + n

2 − k′
2

) ,
and consequently

∫ π
2

− π
2

cosn(θ) eik′θ dθ = −i2−n

∫
	

(w + w−1)nwk′−1 dw

= 2−nπ	(n + 1)

	
(
1 + n

2 + k′
2

)
	
(
1 + n

2 − k′
2

) .
For fixed n, both expressions on the left- and the right-hand
side of (B.1) define functions, which are holomorphic for k′ in
the entire complex plane. Therefore, the restriction k′ � n can
be removed, and the claimed identity holds for all real n > 0
and k′ ∈ (−∞,∞).

Appendix C. Product of Gamma functions

We rewrite the product of Gamma functions 	(1 + n/2 −
x)	 (1 + n/2 + x) for all n ∈ N in terms of trigonometric
functions as follows. Using the crucial properties of the
Gamma function

	(1 + x) = x	(x), 	(1 − x)	(x) = π

sin(πx)
,

see [39], we obtain for even n

	
(

1 +
n

2
− x

)
	
(

1 +
n

2
+ x

)

= − 1

x
	(1 − x)	(x)

n
2∏

j=0

(j − x)(j + x)

= − π

x sin(πx)

n
2∏

j=0

(j 2 − x2)

and for odd n

	
(

1 +
n

2
− x

)
	
(

1 +
n

2
+ x

)
= 	

[
1 −

(
1

2
+ x

)]
	

(
1

2
+ x

)

×
n
2 − 1

2∏
j=0

(
j +

1

2
− x

)(
j +

1

2
+ x

)

= π

cos (πx)

n
2 − 1

2∏
j=0

[(
j +

1

2

)2

− x2

]
.
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