53 research outputs found

    Stability of a non-orthogonal stagnation flow to three dimensional disturbances

    Get PDF
    A similarity solution for a low Mach number nonorthogonal flow impinging on a hot or cold plate is presented. For the constant density case, it is known that the stagnation point shifts in the direction of the incoming flow and that this shift increases as the angle of attack decreases. When the effects of density variations are included, a critical plate temperature exists; above this temperature the stagnation point shifts away from the incoming stream as the angle is decreased. This flow field is believed to have application to the reattachment zone of certain separated flows or to a lifting body at a high angle of attack. Finally, the stability of this nonorthogonal flow to self similar, 3-D disturbances is examined. Stability properties of the flow are given as a function of the parameters of this study; ratio of the plate temperature to that of the outer potential flow and angle of attack. In particular, it is shown that the angle of attack can be scaled out by a suitable definition of an equivalent wavenumber and temporal growth rate, and the stability problem for the nonorthogonal case is identical to the stability problem for the orthogonal case

    Interaction of disturbances with an oblique detonation wave attached to a wedge

    Get PDF
    The linear response of an oblique overdriven detonation to impose free stream disturbances or to periodic movements of the wedge is examined. The free stream disturbances are assumed to be steady vorticity waves and the wedge motions are considered to be time periodic oscillations either about a fixed pivot point or along the plane of symmetry of the wedge aligned with the incoming stream. The detonation is considered to be a region of infinitesmal thickness in which a finite amount of heat is released. The response to the imposed disturbances is a function of the Mach number of the incoming flow, the wedge angle, and the exothermocity of the reaction within the detonation. It is shown that as the degree of overdrive increases, the amplitude of the response increases significantly; furthermore, a fundamental difference in the dependence of the response on the parameters of the problem is found between the response to a free stream disturbance and to a disturbance emanating from the wedge surface

    Temperature and Suction Effects on the Instability of an Infinite Swept Attachment Line

    Get PDF
    It is known that the incompressible, infinite swept attachment line flow is unstable to streamwise disturbances that originate in the boundary layer when the cross-flow exceeds a critical magnitude. Furthermore, a small degree of suction at the surface has a significant stabilizing influence while a small degree of blowing has a considerable destabilizing influence. This paper investigates the stabilizing and destabilizing effects of, respectively, cooling or heating the plate and the competing or enhancing effects of suction or blowing. A nonorthogonal flow with respect to the attachment line is also considered by adding a component of shear to the mean flow. © 1992 American Institute of Physics

    Nonlinear-Interaction of a Detonation Vorticity Wave

    Get PDF
    The interaction of an oblique, overdriven detonation wave with a vorticity disturbance is investigated by a direct two-dimensional numerical simulation using a multidomain, finite-difference solution of the compressible Euler equations. The results are compared to those of linear theory, which predict that the effect of exothermicity on the interaction is relatively small except possibly near a critical angle where linear theory no longer holds. It is found that the steady-state computational results whenever obtained in this study agree with the results of linear theory. However, for cases with incident angle near the critical angle, moderate disturbance amplitudes, and/or sudden transient encounter with a disturbance, the effects of exothermicity are more pronounced than predicted by linear theory. Finally, it is found that linear theory correctly determines the critical angle. © 1991 American Institute of Physic

    Erratum: Temperature and Suction Effects on the Instability of an Infinite Swept Attachment Line [Physics of Fluids A 4, 2008 (1992)]

    Get PDF
    Erratum to: Lasseigne, D. G., Jackson, T. L., & Hu, F. Q. (1992). Temperature and suction effects on the instability of an infinite swept attachment line. Physics of Fluids A: Fluid Dynamics, 4(9), 2008-2012. doi:10.1063/1.85837

    Towards enhancing and delaying disturbances in free shear flows

    Get PDF
    The family of shear flows comprising the jet, wake, and the mixing layer are subjected to perturbations in an inviscid incompressible fluid. By modeling the basic mean flows as parallel with piecewise linear variations for the velocities, complete and general solutions to the linearized equations of motion can be obtained in closed form as functions of all space variables and time when posed as an initial value problem. The results show that there is a continuous as well as the discrete spectrum that is more familiar in stability theory and therefore there can be both algebraic and exponential growth of disturbances in time. These bases make it feasible to consider control of such flows. To this end, the possibility of enhancing the disturbances in the mixing layer and delaying the onset in the jet and wake is investigated. It is found that growth of perturbations can be delayed to a considerable degree for the jet and the wake but, by comparison, cannot be enhanced in the mixing layer. By using moving coordinates, a method for demonstrating the predominant early and long time behavior of disturbances in these flows is given for continuous velocity profiles. It is shown that the early time transients are always algebraic whereas the asymptotic limit is that of an exponential normal mode. Numerical treatment of the new governing equations confirm the conclusions reached by use of the piecewise linear basic models. Although not pursued here, feedback mechanisms designed for control of the flow could be devised using the results of this work

    The Stability of Compressible Mixing Layers in Binary Gases

    Get PDF
    We present the results of a study of the inviscid two-dimensional spatial stability of a parallel compressible mixing layer in a binary gas. The parameters of this study are the Mach number of the fast stream, the ratio of the velocity of the slow stream to that of the fast stream, the ratio of the temperatures, the composition of the gas in the slow stream and in the fast stream, and the frequency of the disturbance wave. The ratio of the molecular weight of the slow stream to that of the fast stream is found to be an important quantity and is used as an independent variable in presenting the stability characteristics of the flow. It is shown that differing molecular weights have a significant effect on the neutral-mode phase speeds, the phase speeds of the unstable modes, the maximum growth rates, and the unstable frequency range of the disturbances. The molecular weight ratio is a reasonable predictor of the stability trends. We have further demonstrated that the normalized growth rate as a function of the convective Mach number is relatively insensitive (≈25%) to changes in the composition of the mixing layer. Thus, the normalized growth rate is a key element when considering the stability of compressible mixing layers, since once the basic stability characteristics for a particular combination of gases is known at zero Mach number, the decrease in growth rates due to compressibility effects at the larger convective Mach numbers is somewhat predictable. (C) 1996 American Institute of Physics

    The stability of compressible mixing layers in binary gases

    Get PDF
    We present the results of a study of the inviscid two-dimensional spatial stability of a parallel compressible mixing layer in a binary gas. The parameters of this study are the Mach number of the fast stream, the ratio of the velocity of the slow stream to that of the fast stream, the ratio of the temperatures, the composition of the gas in the slow stream and in the fast stream, and the frequency of the disturbance wave. The ratio of the molecular weight of the slow stream to that of the fast stream is found to be an important quantity and is used as an independent variable in presenting the stability characteristics of the flow. It is shown that differing molecular weights have a significant effect on the neutral-mode phase speeds, the phase speeds of the unstable modes, the maximum growth rates and the unstable frequency range of the disturbances. The molecular weight ratio is a reasonable predictor of the stability trends. We have further demonstrated that the normalized growth rate as a function of the convective Mach number is relatively insensitive (Approx. 25%) to changes in the composition of the mixing layer. Thus, the normalized growth rate is a key element when considering the stability of compressible mixing layers, since once the basic stability characteristics for a particular combination of gases is known at zero Mach number, the decrease in growth rates due to compressibility effects at the larger convective Mach numbers is somewhat predictable

    Induced Mach Wave-Flame Interactions in Laminar Supersonic Fuel Jets

    Get PDF
    A model problem is proposed to investigate the steady response of a reacting, compressible laminar jet to Mach waves generated by wavy walls in a channel of finite width. The model consists of a two-dimensional jet of fuel emerging into a stream of oxidizer which are allowed to mix and react in the presence of the Mach waves. The governing equations are taken to be the steady parabolized Navier-Stokes equations which are solved numerically. The kinetics is assumed to be a one-step, irreversible reaction of the Arrhenius type. Two important questions on the Mach wave-flame interactions are discussed: (i) how is the flame structure altered by the presence of the Mach waves, and (ii) can the presence of the Mach waves change the efficiency of the combustion processes? © 1993 American Institute of Physics

    Absolute-Convective Instabilities and Their Associated Wave Packets in a Compressible Reacting Mixing Layer

    Get PDF
    In this paper the transition from convective to absolute instability in a reacting compressible mixing layer with finite rate chemistry is examined. The reaction is assumed to be one step, irreversible, and of Arrhenius type. It is shown that absolute instability can exist for moderate heat release without backflow. The effects of the temperature ratio, heat release parameter, Zeldovich number, equivalence ratio, direction of propagation of the disturbances, and the Mach number on the transition value of the velocity ratio are given. The present results are compared to those obtained from the flame sheet model for the temperature using the Lock similarity solution for the velocity profile. Finally, the structure of the wave packets produced by an impulse in the absolutely unstable flow is examined. © 1993 American Institute of Physics
    corecore