85 research outputs found

    Consumer evaluation of complaint handling in the Dutch health insurance market

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>How companies deal with complaints is a particularly challenging aspect in managing the quality of their service. In this study we test the direct and relative effects of service quality dimensions on consumer complaint satisfaction evaluations and trust in a company in the Dutch health insurance market.</p> <p>Methods</p> <p>A cross-sectional survey design was used. Survey data of 150 members of a Dutch insurance panel who lodged a complaint at their healthcare insurer within the past 12 months were surveyed. The data were collected using a questionnaire containing validated multi-item measures. These measures assess the service quality dimensions consisting of functional quality and technical quality and consumer complaint satisfaction evaluations consisting of complaint satisfaction and overall satisfaction with the company after complaint handling. Respondents' trust in a company after complaint handling was also measured. Using factor analysis, reliability and validity of the measures were assessed. Regression analysis was used to examine the relationships between these variables.</p> <p>Results</p> <p>Overall, results confirm the hypothesized direct and relative effects between the service quality dimensions and consumer complaint satisfaction evaluations and trust in the company. No support was found for the effect of technical quality on overall satisfaction with the company. This outcome might be driven by the context of our study; namely, consumers get in touch with a company to resolve a specific problem and therefore might focus more on complaint satisfaction and less on overall satisfaction with the company.</p> <p>Conclusions</p> <p>Overall, the model we present is valid in the context of the Dutch health insurance market. Management is able to increase consumers' complaint satisfaction, overall satisfaction with the company, and trust in the company by improving elements of functional and technical quality. Furthermore, we show that functional and technical quality do not influence consumer satisfaction evaluations and trust in the company to the same extent. Therefore, it is important for managers to be aware of the type of consumer satisfaction they are measuring when evaluating the handling of complaints within their company.</p

    The myogenic transcriptional network

    Get PDF
    Myogenesis has been a leading model for elucidating the molecular mechanisms that underlie tissue differentiation and development since the discovery of MyoD. During myogenesis, the fate of myogenic precursor cells is first determined by Pax3/Pax7. This is followed by regulation of the myogenic differentiation program by muscle regulatory factors (Myf5, MyoD, Myog, and Mrf4) to form muscle tissues. Recent studies have uncovered a detailed myogenic program that involves the RP58 (Zfp238)-dependent regulatory network, which is critical for repressing the expression of inhibitor of DNA binding (Id) proteins. These novel findings contribute to a comprehensive understanding of the muscle differentiation transcriptional program

    Down-Regulation of AP-4 Inhibits Proliferation, Induces Cell Cycle Arrest and Promotes Apoptosis in Human Gastric Cancer Cells

    Get PDF
    BACKGROUND: AP-4 belongs to the basic helix-loop-helix leucine-zipper subgroup; it controls target gene expression, regulates growth, development and cell apoptosis and has been implicated in tumorigenesis. Our previous studies indicated that AP-4 was frequently overexpressed in gastric cancers and may be associated with the poor prognosis. The purpose of this study is to examine whether silencing of AP-4 can alter biological characteristics of gastric cancer cells. METHODS: Two specific siRNAs targeting AP-4 were designed, synthesized, and transfected into gastric cancer cell lines and human normal mucosa cells. AP-4 expression was measured with real-time quantitative PCR and Western blot. Cell proliferation and chemo-sensitivity were detected by CCK-8 assay. Cell cycle assay and apoptosis assay were performed by flow cytometer, and relative expression of cell cycle regulators were detected by real-time quantitative PCR and Western blot, expression of the factors involved in the apoptosis pathway were examined in mRNA and protein level. RESULTS: The expression of AP-4 was silenced by the siRNAs transfection and the effects of AP-4 knockdown lasted 24 to 96 hrs. The siRNA-mediated silencing of AP-4 suppressed the cellular proliferation, induced apoptosis and sensitized cancer cells to anticancer drugs. In addition, the expression level of p21, p53 and Caspase-9 were increased when AP-4 was knockdown, but the expression of cyclin D1, Bcl-2 and Bcl-x(L) was inhibited. It didn't induce cell cycle arrest when AP-4 was knockdown in p53 defect gastric cancer cell line Kato-III. CONCLUSIONS: These results illustrated that gene silencing of AP-4 can efficiently inhibited cell proliferation, triggered apoptosis and sensitized cancer cells to anticancer drugs in vitro, suggesting that AP-4 siRNAs mediated silencing has a potential value in the treatment of human gastric cancer

    Genome-Wide Analysis of Histone H3 Lysine9 Modifications in Human Mesenchymal Stem Cell Osteogenic Differentiation

    Get PDF
    Mesenchymal stem cells (MSCs) possess self-renewal and multi-lineage differentiation potentials. It has been established that epigenetic mechanisms such as histone modifications could be critical for determining the fate of stem cells. In this study, full human genome promoter microarrays and expression microarrays were used to explore the roles of histone modifications (H3K9Ac and H3K9Me2) upon the induction of MSC osteogenic differentiation. Our results revealed that the enrichment of H3K9Ac was decreased globally at the gene promoters, whereas the number of promoters enriched with H3K9Me2 was increased evidently upon osteogenic induction. By a combined analysis of data from both ChIP-on-chip and expression microarrays, a number of differentially expressed genes regulated by H3K9Ac and/or H3K9Me2 were identified, implicating their roles in several biological events, such as cell cycle withdraw and cytoskeleton reconstruction that were essential to differentiation process. In addition, our results showed that the vitamin D receptor played a trans-repression role via alternations of H3K9Ac and H3K9Me2 upon MSC osteogenic differentiation. Data from this study suggested that gene activation and silencing controlled by changes of H3K9Ac and H3K9Me2, respectively, were crucial to MSC osteogenic differentiation

    AMP-Activated Protein Kinase-Regulated Activation of the PGC-1Ξ± Promoter in Skeletal Muscle Cells

    Get PDF
    The mechanisms by which PGC-1Ξ± gene expression is controlled in skeletal muscle remains largely undefined. Thus, we sought to investigate the transcriptional regulation of PGC-1Ξ± using AICAR, an activator of AMPK, that is known to increase PGC-1Ξ± expression. A 2.2 kb fragment of the human PGC-1Ξ± promoter was cloned and sequence analysis revealed that this TATA-less sequence houses putative consensus sites including a GC-box, a CRE, several IRSs, a SRE, binding sites for GATA, MEF2, p 53, NF-ΞΊB, and EBox binding proteins. AMPK activation for 24 hours increased PGC-1Ξ± promoter activity with concomitant increases in mRNA expression. The effect of AICAR on transcriptional activation was mediated by an overlapping GATA/EBox binding site at βˆ’495 within the PGC-1Ξ± promoter based on gel shift analyses that revealed increases in GATA/EBox DNA binding. Mutation of the EBox within the GATA/EBox binding site in the promoter reduced basal promoter activity and completely abolished the AICAR effect. Supershift analyses identified USF-1 as a DNA binding transcription factor potentially involved in regulating PGC-1Ξ± promoter activity, which was confirmed in vivo by ChIP. Overexpression of either GATA-4 or USF-1 alone increased the p851 PGC-1Ξ± promoter activity by 1.7- and 2.0-fold respectively, while co-expression of GATA-4 and USF-1 led to an additive increase in PGC-1Ξ± promoter activity. The USF-1-mediated increase in PGC-1Ξ± promoter activation led to similar increases at the mRNA level. Our data identify a novel AMPK-mediated regulatory pathway that regulates PGC-1Ξ± gene expression. This could represent a potential therapeutic target to control PGC-1Ξ± expression in skeletal muscle

    Transformation of Human Mesenchymal Cells and Skin Fibroblasts into Hematopoietic Cells

    Get PDF
    Patients with prolonged myelosuppression require frequent platelet and occasional granulocyte transfusions. Multi-donor transfusions induce alloimmunization, thereby increasing morbidity and mortality. Therefore, an autologous or HLA-matched allogeneic source of platelets and granulocytes is needed. To determine whether nonhematopoietic cells can be reprogrammed into hematopoietic cells, human mesenchymal stromal cells (MSCs) and skin fibroblasts were incubated with the demethylating agent 5-azacytidine (Aza) and the growth factors (GF) granulocyte-macrophage colony-stimulating factor and stem cell factor. This treatment transformed MSCs to round, non-adherent cells expressing T-, B-, myeloid-, or stem/progenitor-cell markers. The transformed cells engrafted as hematopoietic cells in bone marrow of immunodeficient mice. DNA methylation and mRNA array analysis suggested that Aza and GF treatment demethylated and activated HOXB genes. Indeed, transfection of MSCs or skin fibroblasts with HOXB4, HOXB5, and HOXB2 genes transformed them into hematopoietic cells. Further studies are needed to determine whether transformed MSCs or skin fibroblasts are suitable for therapy
    • …
    corecore