6 research outputs found

    Ecological mechanisms explaining interactions within plant–hummingbird networks: morphological matching increases towards lower latitudes

    Get PDF
    No embargoInteractions between species are influenced by different ecological mechanisms, such as morphological matching, phenological overlap and species abundances. How these mechanisms explain interaction frequencies across environmental gradients remains poorly understood. Consequently, we also know little about the mechanisms that drive the geographical patterns in network structure, such as complementary specialization and modularity. Here, we use data on morphologies, phenologies and abundances to explain interaction frequencies between hummingbirds and plants at a large geographical scale. For 24 quantitative networks sampled throughout the Americas, we found that the tendency of species to interact with morphologically matching partners contributed to specialized and modular network structures. Morphological matching best explained interaction frequencies in networks found closer to the equator and in areas with low-temperature seasonality. When comparing the three ecological mechanisms within networks, we found that both morphological matching and phenological overlap generally outperformed abundances in the explanation of interaction frequencies. Together, these findings provide insights into the ecological mechanisms that underlie geographical patterns in resource specialization. Notably, our results highlight morphological constraints on interactions as a potential explanation for increasing resource specialization towards lower latitudes.</jats:p

    Morphological and behavioural adaptations to feed on nectar: how feeding ecology determines the diversity and composition of hummingbird assemblages

    Full text link
    Hummingbirds are the most specialised nectarivorous birds and show close ecological relationships to their food plants. Their small body size, bright colors, and unique behaviour have fascinated generations of naturalists. In this review, we investigate the morphological and behavioural adaptations of hummingbirds to feed on nectar and arthropods, and explore their diffuse co-evolution with their food plant species. Further, a list of plant genera including species mainly pollinated by hummingbirds is presented. Summarising the existing knowledge on hummingbird feeding ecology, we find that much of the variability in morphology and behaviour of hummingbirds is determined by their unique feeding mode and the constraints set by their food plants. Based on the existing literature, we developed a hierarchical system explaining how different environmental factors have shaped the current richness of hummingbirds, and their morphological and behavioural diversity. We propose that climatic stability within and between seasons and days determines the constancy of food availability, which in turn is the most important factor for species richness in hummingbird assemblages. However, the assemblage composition of hummingbirds is also influenced by phylogenetic factors, especially under harsh environmental conditions. Unsurprisingly, the highest morphological and behavioural diversity is observed in the most species-rich assemblages. This diversity may have at least partly evolved to reduce inter- and intraspecific competition. Independently of which morphological character we consider, the 360 different hummingbird species have evolved a large morphological variability to adapt to their individual feeding niches

    Morphological and behavioural adaptations to feed on nectar: how feeding ecology determines the diversity and composition of hummingbird assemblages

    No full text
    corecore