127 research outputs found

    The Saccharomyces cerevisiae gene YPR011c encodes a mitochondrial transporter of adenosine 5'-phosphosulfate and 3'-phospho-adenosine 5'-phosphosulfate

    Get PDF
    The genome of Saccharomyces cerevisiae contains 35 members of the mitochondrial carrier family, nearly all of which have been functionally characterized. In this study, the identification of the mitochondrial carrier for adenosine 5'-phosphosulfate (APS) is described. The corresponding gene (YPR011c) was overexpressed in bacteria. The purified protein was reconstituted into phospholipid vesicles and its transport properties and kinetic parameters were characterized. It transported APS, 3'-phospho-adenosine 5'-phosphosulfate, sulfate and phosphate almost exclusively by a counter-exchange mechanism. Transport was saturable and inhibited by bongkrekic acid and other inhibitors. To investigate the physiological significance of this carrier in S. cerevisiae, mutants were subjected to thermal shock at 45°C in the presence of sulfate and in the absence of methionine. At 45°C cells lacking YPR011c, engineered cells (in which APS is produced only in mitochondria) and more so the latter cells, in which the exit of mitochondrial APS is prevented by the absence of YPR011cp, were less thermotolerant. Moreover, at the same temperature all these cells contained less methionine and total glutathione than wild-type cells. Our results show that S. cerevisiae mitochondria are equipped with a transporter for APS and that YPR011cp-mediated mitochondrial transport of APS occurs in S. cerevisiae under thermal stress condition

    Opinion diversity and community formation in adaptive networks

    Full text link
    It is interesting and of significant importance to investigate how network structures co-evolve with opinions. The existing models of such co-evolution typically lead to the final states where network nodes either reach a global consensus or break into separated communities, each of which holding its own community consensus. Such results, however, can hardly explain the richness of real-life observations that opinions are always diversified with no global or even community consensus, and people seldom, if not never, totally cut off themselves from dissenters. In this article, we show that, a simple model integrating consensus formation, link rewiring and opinion change allows complex system dynamics to emerge, driving the system into a dynamic equilibrium with co-existence of diversified opinions. Specifically, similar opinion holders may form into communities yet with no strict community consensus; and rather than being separated into disconnected communities, different communities remain to be interconnected by non-trivial proportion of inter-community links. More importantly, we show that the complex dynamics may lead to different numbers of communities at steady state with a given tolerance between different opinion holders. We construct a framework for theoretically analyzing the co-evolution process. Theoretical analysis and extensive simulation results reveal some useful insights into the complex co-evolution process, including the formation of dynamic equilibrium, the phase transition between different steady states with different numbers of communities, and the dynamics between opinion distribution and network modularity, etc.Comment: 12 pages, 8 figures, Journa

    An Overview of Mitochondrial Protein Defects in Neuromuscular Diseases

    Get PDF
    none8noNeuromuscular diseases (NMDs) are dysfunctions that involve skeletal muscle and cause incorrect communication between the nerves and muscles. The specific causes of NMDs are not well known, but most of them are caused by genetic mutations. NMDs are generally progressive and entail muscle weakness and fatigue. Muscular impairments can differ in onset, severity, prognosis, and phenotype. A multitude of possible injury sites can make diagnosis of NMDs difficult. Mitochondria are crucial for cellular homeostasis and are involved in various metabolic pathways; for this reason, their dysfunction can lead to the development of different pathologies, including NMDs. Most NMDs due to mitochondrial dysfunction have been associated with mutations of genes involved in mitochondrial biogenesis and metabolism. This review is focused on some mitochondrial routes such as the TCA cycle, OXPHOS, and β-oxidation, recently found to be altered in NMDs. Particular attention is given to the alterations found in some genes encoding mitochondrial carriers, proteins of the inner mitochondrial membrane able to exchange metabolites between mitochondria and the cytosol. Briefly, we discuss possible strategies used to diagnose NMDs and therapies able to promote patient outcomeopenMarra Federica, Lunetti Paola, Curcio Rosita, Lasorsa Francesco Massimo, Capobianco Loredana, Porcelli Vito, Dolce Vincenza, Fiermonte Giuseppe and Scarcia PasqualeMarra, Federica; Lunetti, Paola; Curcio, Rosita; Lasorsa Francesco, Massimo; Capobianco, Loredana; Porcelli, Vito; Dolce, Vincenza; Fiermonte Giuseppe and Scarcia, Pasqual

    Histone Acetylation Defects in Brain Precursor Cells: A Potential Pathogenic Mechanism Causing Proliferation and Differentiation Dysfunctions in Mitochondrial Aspartate-Glutamate Carrier Isoform 1 Deficiency

    Get PDF
    Mitochondrial aspartate-glutamate carrier isoform 1 (AGC1) deficiency is an ultra-rare genetic disease characterized by global hypomyelination and brain atrophy, caused by mutations in the SLC25A12 gene leading to a reduction in AGC1 activity. In both neuronal precursor cells and oligodendrocytes precursor cells (NPCs and OPCs), the AGC1 determines reduced proliferation with an accelerated differentiation of OPCs, both associated with gene expression dysregulation. Epigenetic regulation of gene expression through histone acetylation plays a crucial role in the proliferation/differentiation of both NPCs and OPCs and is modulated by mitochondrial metabolism. In AGC1 deficiency models, both OPCs and NPCs show an altered expression of transcription factors involved in the proliferation/differentiation of brain precursor cells (BPCs) as well as a reduction in histone acetylation with a parallel alteration in the expression and activity of histone acetyltransferases (HATs) and histone deacetylases (HDACs). In this study, histone acetylation dysfunctions have been dissected in in vitro models of AGC1 deficiency OPCs (Oli-Neu cells) and NPCs (neurospheres), in physiological conditions and following pharmacological treatments. The inhibition of HATs by curcumin arrests the proliferation of OPCs leading to their differentiation, while the inhibition of HDACs by suberanilohydroxamic acid (SAHA) has only a limited effect on proliferation, but it significantly stimulates the differentiation of OPCs. In NPCs, both treatments determine an alteration in the commitment toward glial cells. These data contribute to clarifying the molecular and epigenetic mechanisms regulating the proliferation/differentiation of OPCs and NPCs. This will help to identify potential targets for new therapeutic approaches that are able to increase the OPCs pool and to sustain their differentiation toward oligodendrocytes and to myelination/remyelination processes in AGC1 deficiency, as well as in other white matter neuropathologies

    Deficiency of mitochondrial aspartate-glutamate carrier 1 leads to oligodendrocyte precursor cell proliferation defects both in vitro and in vivo

    Get PDF
    Aspartate-Glutamate Carrier 1 (AGC1) deficiency is a rare neurological disease caused by mutations in the solute carrier family 25, member 12 (SLC25A12) gene, encoding for the mitochondrial aspartate-glutamate carrier isoform 1 (AGC1), a component of the malate-aspartate NADH shuttle (MAS), expressed in excitable tissues only. AGC1 deficiency patients are children showing severe hypotonia, arrested psychomotor development, seizures and global hypomyelination. While the effect of AGC1 deficiency in neurons and neuronal function has been deeply studied, little is known about oligodendrocytes and their precursors, the brain cells involved in myelination. Here we studied the effect of AGC1 down-regulation on oligodendrocyte precursor cells (OPCs), using both in vitro and in vivo mouse disease models. In the cell model, we showed that a reduced expression of AGC1 induces a deficit of OPC proliferation leading to their spontaneous and precocious differentiation into oligodendrocytes. Interestingly, this effect seems to be related to a dysregulation in the expression of trophic factors and receptors involved in OPC proliferation/differentiation, such as Platelet-Derived Growth Factor α (PDGFα) and Transforming Growth Factor βs (TGFβs). We also confirmed the OPC reduction in vivo in AGC1-deficent mice, as well as a proliferation deficit in neurospheres from the Subventricular Zone (SVZ) of these animals, thus indicating that AGC1 reduction could affect the proliferation of different brain precursor cells. These data clearly show that AGC1 impairment alters myelination not only by acting on N-acetyl-aspartate production in neurons but also on OPC proliferation and suggest new potential therapeutic targets for the treatment of AGC1 deficiency

    Deficiency of Mitochondrial Aspartate-Glutamate Carrier 1 Leads to Oligodendrocyte Precursor Cell Proliferation Defects Both In Vitro and In Vivo

    Get PDF
    Aspartate-Glutamate Carrier 1 (AGC1) deficiency is a rare neurological disease caused by mutations in the solute carrier family 25, member 12 (SLC25A12) gene, encoding for the mitochondrial aspartate-glutamate carrier isoform 1 (AGC1), a component of the malate-aspartate NADH shuttle (MAS), expressed in excitable tissues only. AGC1 deficiency patients are children showing severe hypotonia, arrested psychomotor development, seizures and global hypomyelination. While the effect of AGC1 deficiency in neurons and neuronal function has been deeply studied, little is known about oligodendrocytes and their precursors, the brain cells involved in myelination. Here we studied the effect of AGC1 down-regulation on oligodendrocyte precursor cells (OPCs), using both in vitro and in vivo mouse disease models. In the cell model, we showed that a reduced expression of AGC1 induces a deficit of OPC proliferation leading to their spontaneous and precocious differentiation into oligodendrocytes. Interestingly, this effect seems to be related to a dysregulation in the expression of trophic factors and receptors involved in OPC proliferation/differentiation, such as Platelet-Derived Growth Factor \u3b1 (PDGF\u3b1) and Transforming Growth Factor \u3b2s (TGF\u3b2s). We also confirmed the OPC reduction in vivo in AGC1-deficent mice, as well as a proliferation deficit in neurospheres from the Subventricular Zone (SVZ) of these animals, thus indicating that AGC1 reduction could affect the proliferation of different brain precursor cells. These data clearly show that AGC1 impairment alters myelination not only by acting on N-acetyl-aspartate production in neurons but also on OPC proliferation and suggest new potential therapeutic targets for the treatment of AGC1 deficiency

    SLC25A22 is a novel gene for migrating partial seizures in infancy

    Get PDF
    Objective To identify a genetic cause for migrating partial seizures in infancy (MPSI). Methods We characterized a consanguineous pedigree with MPSI and obtained DNA from affected and unaffected family members. We analyzed single nucleotide polymorphism 500K data to identify regions with evidence of linkage. We performed whole exome sequencing and analyzed homozygous variants in regions of linkage to identify a candidate gene and performed functional studies of the candidate gene SLC25A22. Results In a consanguineous pedigree with 2 individuals with MPSI, we identified 2 regions of linkage, chromosome 4p16.1-p16.3 and chromosome 11p15.4-pter. Using whole exome sequencing, we identified 8 novel homozygous variants in genes in these regions. Only 1 variant, SLC25A22 c.G328C, results in a change of a highly conserved amino acid (p.G110R) and was not present in control samples. SLC25A22 encodes a glutamate transporter with strong expression in the developing brain. We show that the specific G110R mutation, located in a transmembrane domain of the protein, disrupts mitochondrial glutamate transport. Interpretation We have shown that MPSI can be inherited and have identified a novel homozygous mutation in SLC25A22 in the affected individuals. Our data strongly suggest that SLC25A22 is responsible for MPSI, a severe condition with few known etiologies. We have demonstrated that a combination of linkage analysis and whole exome sequencing can be used for disease gene discovery. Finally, as SLC25A22 had been implicated in the distinct syndrome of neonatal epilepsy with suppression bursts on electroencephalogram, we have expanded the phenotypic spectrum associated with SLC25A22. Ann Neurol 2013;74:873-882 © 2013 American Neurological Association

    KRAS-regulated glutamine metabolism requires UCP2-mediated aspartate transport to support pancreatic cancer growth

    Get PDF
    The oncogenic KRAS mutation has a critical role in the initiation of human pancreatic ductal adenocarcinoma (PDAC) since it rewires glutamine metabolism to increase reduced nicotinamide adenine dinucleotide phosphate (NADPH) production, balancing cellular redox homeostasis with macromolecular synthesis1,2. Mitochondrial glutamine-derived aspartate must be transported into the cytosol to generate metabolic precursors for NADPH production2. The mitochondrial transporter responsible for this aspartate efflux has remained elusive. Here, we show that mitochondrial uncoupling protein 2 (UCP2) catalyses this transport and promotes tumour growth. UCP2-silenced KRASmut cell lines display decreased glutaminolysis, lower NADPH/NADP+ and glutathione/glutathione disulfide ratios and higher reactive oxygen species levels compared to wild-type counterparts. UCP2 silencing reduces glutaminolysis also in KRASWT PDAC cells but does not affect their redox homeostasis or proliferation rates. In vitro and in vivo, UCP2 silencing strongly suppresses KRASmut PDAC cell growth. Collectively, these results demonstrate that UCP2 plays a vital role in PDAC, since its aspartate transport activity connects the mitochondrial and cytosolic reactions necessary for KRASmut rewired glutamine metabolism2, and thus it should be considered a key metabolic target for the treatment of this refractory tumour

    Reversal of <i>MYB </i>-dependent suppression of <i>MAFB </i>expression overrides leukaemia phenotype in MLL-rearranged AML

    Get PDF
    Abstract The transcription factor MYB plays a pivotal role in haematopoietic homoeostasis and its aberrant expression is involved in the genesis and maintenance of acute myeloid leukaemia (AML). We have previously demonstrated that not all AML subtypes display the same dependency on MYB expression and that such variability is dictated by the nature of the driver mutation. However, whether this difference in MYB dependency is a general trend in AML remains to be further elucidated. Here, we investigate the role of MYB in human leukaemia by performing siRNA-mediated knock-down in cell line models of AML with different driver lesions. We show that the characteristic reduction in proliferation and the concomitant induction of myeloid differentiation that is observed in MLL-rearranged and t(8;21) leukaemias upon MYB suppression is not seen in AML cells with a complex karyotype. Transcriptome analyses revealed that MYB ablation produces consensual increase of MAFB expression in MYB-dependent cells and, interestingly, the ectopic expression of MAFB could phenocopy the effect of MYB suppression. Accordingly, in silico stratification analyses of molecular data from AML patients revealed a reciprocal relationship between MYB and MAFB expression, highlighting a novel biological interconnection between these two factors in AML and supporting new rationales of MAFB targeting in MLL-rearranged leukaemias
    • …
    corecore