13 research outputs found

    Upregulation of citrullination pathway: From Autoimmune to Idiopathic Lung Fibrosis

    No full text
    Background: Increased protein citrullination and peptidylarginine deiminases (PADIs), which catalyze the citrullination process, are central in Rheumatoid arthritis pathogenesis and probably involved in the initial steps towards autoimmunity. Approximately, 10% of RA patients develop clinically significantly ILD. A possible shared role of protein citrullination in rheumatoid arthritis associated interstitial lung disease (RA-ILD), and idiopathic pulmonary fibrosis (IPF) pathogenesis remains unclear. Methods: We evaluated PADI2 and PADI4 mRNA expression in bronchoalveolar lavage fluid (BALF) cells of 59 patients with IPF, 27 patients RA-ILD and 10 healthy controls. PADI 2 and 4 expression was analyzed by western blot and immunohistochemistry. Citrullinated protein levels were also quantified. Results: PADI4 mRNA and protein levels were higher in RA-ILD and IPF than controls. Furthermore, PADI4 mRNA levels showed an increase among smokers in RA-ILD. PADI4 expression was detected in granulocytes and macrophages in all groups, with the strongest cytoplasmic expression observed in granulocytes in RA-ILD and IPF. PADI2 mRNA and immunostaining of BAL cells, were similar in all groups among smokers. Overall, stronger staining was observed in current smokers. Citrullinated peptides were significantly increased in IPF compared to RA-ILD and controls. In RA-ILD, protein citrullination strongly correlated with PADI4 expression and anti-citrullinated protein antibodies (ACPAs). Conclusions: These results suggest that the citrullination pathway is upregulated in IPF and in RA-ILD

    MiR-185 / AKT and miR-29a / Collagen 1a pathways are activated in IPF BAL cells

    Get PDF
    MicroRNA signatures of BAL cells and alveolar macrophages are currently lacking in IPF. Here we sought to investigate the expression of fibrosis-related microRNAs in the cellular component of the BAL in IPF. We thus focused on microRNAs previously associated with fibrosis (miR-29a, miR-29b, miR-29c, let-7d, and miR-21) and rapid IPF progression (miR-185, miR-210, miR-302c-3p miR-376c and miR-423-5p). Among the tested microRNAs miR-29a and miR-185 were found significantly downregulated in IPF while miR-302c-3p and miR-376c were not expressed by BAL cells. Importantly, the downregulation of miR-29a inversely correlated with the significantly increased levels of COL1A1 mRNA in IPF BAL cells. Collagen 1 a was found mainly overexpressed in alveolar macrophages and not other cell types of the BAL by immunofluorescence. In view of the downregulation of miR-185, we tested the response of THP-1 macrophages to profibrotic cytokine TGFb and observed the downregulation of miR-185. Conversely, proinflammatory stimulation lead to miR-185 upregulation. Upon examination of the mRNA levels of known miR-185 targets AKT1, DNMT1 and HMGA2, no significant correlations were observed in the BAL cells. However, increased levels of total AKT and AKTser473 phosphorylation were observed in the IPF BAL cells. Furthermore, miR-185 inhibition in THP-1 macrophages resulted in significant increase of AKTser473 phosphorylation. Our study highlights the importance of BAL microRNA signatures in IPF and identifies significant differences in miR-185/AKT and miR-29a/collagen axes in the BAL cells of IPF patients

    Physiologic effects of stress dose corticosteroids in in-hospital cardiac arrest (CORTICA): A randomized clinical trial

    No full text
    Aim: Postresuscitation hemodynamics are associated with hospital mortality/functional outcome. We sought to determine whether low-dose steroids started during and continued after cardiopulmonary resuscitation (CPR) affect postresuscitation hemodynamics and other physiological variables in vasopressor-requiring, in-hospital cardiac arrest. Methods: We conducted a two-center, randomized, double-blind trial of patients with adrenaline (epinephrine)-requiring cardiac arrest. Patients were randomized to receive either methylprednisolone 40 mg (steroids group) or normal saline-placebo (control group) during the first CPR cycle post-enrollment. Postresuscitation shock was treated with hydrocortisone 240 mg daily for 7 days maximum and gradual taper (steroids group), or saline-placebo (control group). Primary outcomes were arterial pressure and central-venous oxygen saturation (ScvO2) within 72 hours post-ROSC. Results: Eighty nine of 98 controls and 80 of 86 steroids group patients with ROSC were treated as randomized. Primary outcome data were collected from 100 patients with ROSC (control, n = 54; steroids, n = 46). In intention-to-treat mixed-model analyses, there was no significant effect of group on arterial pressure, marginal mean (95% confidence interval) for mean arterial pressure, steroids vs. control: 74 (68–80) vs. 72 (66–79) mmHg] and ScvO2 [71 (68–75)% vs. 69 (65–73)%], cardiac index [2.8 (2.5–3.1) vs. 2.9 (2.5–3.2) L/min/m2], and serum cytokine concentrations [e.g. interleukin-6, 89.1 (42.8–133.9) vs. 75.7 (52.1–152.3) pg/mL] determined within 72 hours post-ROSC (P = 0.12–0.86). There was no between-group difference in body temperature, echocardiographic variables, prefrontal blood flow index/cerebral autoregulation, organ failure-free days, and hazard for poor in-hospital/functional outcome, and adverse events (P = 0.08–>0.99). Conclusions: Our results do not support the use of low-dose corticosteroids in in-hospital cardiac arrest. Trial Registration: ClinicalTrials.gov number: NCT02790788 (https://www.clinicaltrials.gov). © 2022 The Author
    corecore