4 research outputs found

    The involvement of JAK/STAT signaling pathway in the treatment of Parkinson's disease

    Get PDF
    Parkinson's disease (PD) is a neurodegenerative disorder in which inflammation and oxidative stress play key etiopathological role. The pathology of PD brain is characterized by inclusions of aggregated α-synuclein (α-SYN) in the cytoplasmic region of neurons. Clinical evidence suggests that stimulation of pro-inflammatory cytokines leads to neuroinflammation in the affected brain regions. Upon neuroinflammation, the Janus Kinase/Signal Transducers and Activators of Transcription (JAK/STAT) signaling pathway, and other transcription factors such as nuclear factor κB (NF-κB), NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3), mammalian target of rapamycin (mTOR), and toll-like receptors (TLRs) are upregulated and induce the microglial activation, contributing to PD via dopaminergic neuron autophagy. Aberrant activation or phosphorylation of the components of JAK/STAT signaling pathway has been implicated in increased transcription of the inflammation-associated genes and many neurodegenerative disorders such as PD. Interferon gamma (IFN-γ), and interleukine (IL)-6 are two of the most potent activators of the JAK/STAT pathway, and it was shown to be elevated in PD. Stimulation of microglial cell with aggregated α-SYN results in production of nitric oxide (NO), tumor necrosis factor (TNF)-α, and IL-1β in PD. Dysregulation of the JAK/STAT in PD and its involvement in various inflammatory pathways make it a promising PD therapy approach. So far, a variety of synthetic or natural small-molecule JAK inhibitors (Jakinibs) have been found promising in managing a spectrum of ailments, many of which are in preclinical research or clinical trials. Herein, we provided a perspective on the function of the JAK/STAT signaling pathway in PD progression and gathered data that describe the rationale evidence on the potential application of Jakinibs to improve neuroinflammation in PD

    [In Press] Ginger : a complementary approach for management of cardiovascular diseases

    No full text
    Cardiovascular disease (CVD) is a leading cause of morbidity and mortality worldwide. Inflammation and oxidative stress play critical roles in progression of various types of CVD. Broad pharmacological properties of ginger (the rhizome of Zingiber officinale) and its bioactive components have been reported, suggesting that they can be a therapeutic choice for clinical use. Consistent with its rich phenolic content, the anti-inflammatory and antioxidant properties of ginger have been confirmed in many studies. Ginger modifies many cellular processes and in particular was shown to have potent inhibitory effects against nuclear factor kappa B (NF-κB); signal transducer and activator of transcription; NOD-, LRR-, and pyrin domain-containing proteins; toll-like receptors; mitogen-activated protein kinase; and mammalian target of rapamycin signaling pathways. Ginger also blocks pro-inflammatory cytokines and the activation of the immune system. Ginger suppresses the activity of oxidative molecules such as reactive oxygen species, inducible nitric oxide synthase, superoxide dismutase, glutathione, heme oxygenase, and GSH-Px. In this report, we summarize the biochemical pathologies underpinning a variety of CVDs and the effects of ginger and its bioactive components, including 6-shogaol, 6-gingerol, and 10-dehydrogingerdione. The properties of ginger and its phenolic components, mechanism of action, biological functions, side effects, and methods for enhanced cell delivery are also discussed. Together with preclinical and clinical studies, the positive biological effects of ginger and its bioactive components in CVD support the undertaking of further in vivo and especially clinical studies

    Ginger and its constituents : role in treatment of inflammatory bowel disease

    No full text
    Inflammatory bowel diseases (IBD), with obscure etiology, are rising and are of worldwide concern. Of the various components of IBD pathogenesis and progression, irritation appears to play a major part. Investigations on the molecular and cellular pathways that activate the IBD provide the focus for the development of useful therapies. Ginger (the rhizome of Zingiber officinale) has a broad spectrum of clinical applications due to its anti-inflammatory and anti-oxidative functions. Inflammation and oxidative stress are the key pathogenic factors in many diseases, including IBD. The most established components of ginger are phenolic compounds called gingerols. A wide range of pharmacological activities of the potential therapeutic benefit of Z. officinale have been detailed. In this regard, the anti-inflammatory activity of ginger has been documented by many researchers. It was shown that ginger is a potent inhibitor of the nuclear factor kappa B (NF-κB), signal transducer of activators of transcription (STATs), Nod-like receptor family proteins (NLRPs), toll-like receptors (TLRs), mitogen-activated protein kinase (MAPKs), and mTOR (mTOR) pathways, as well as inhibiting various pro-inflammatory cytokines. In the present report, the potential application of ginger in the management of IBD is reviewed in detail, with an emphasis on the relevant properties of ginger and its bioactive components. The significance of the functions, side effects, and delivery of ginger to the digestive system for particular application in IBD are also considered
    corecore