5 research outputs found

    AI‐based intra‐tumor heterogeneity score of Ki67 expression as a prognostic marker for early‐stage ER+/HER2− breast cancer

    Get PDF
    arly-stage estrogen receptor positive and human epidermal growth factor receptor negative (ER+/HER2−) luminal breast cancer (BC) is quite heterogeneous and accounts for about 70% of all BCs. Ki67 is a proliferation marker that has a significant prognostic value in luminal BC despite the challenges in its assessment. There is increasing evidence that spatial colocalization, which measures the evenness of different types of cells, is clinically important in several types of cancer. However, reproducible quantification of intra-tumor spatial heterogeneity remains largely unexplored. We propose an automated pipeline for prognostication of luminal BC based on the analysis of spatial distribution of Ki67 expression in tumor cells using a large well-characterized cohort (n = 2,081). The proposed Ki67 colocalization (Ki67CL) score can stratify ER+/HER2− BC patients with high significance in terms of BC-specific survival (p < 0.00001) and distant metastasis-free survival (p = 0.0048). Ki67CL score is shown to be highly significant compared with the standard Ki67 index. In addition, we show that the proposed Ki67CL score can help identify luminal BC patients who can potentially benefit from adjuvant chemotherapy

    AI-enabled routine H&E image based prognostic marker for early-stage luminal breast cancer

    Get PDF
    Breast cancer (BC) grade is a well-established subjective prognostic indicator of tumour aggressiveness. Tumour heterogeneity and subjective assessment result in high degree of variability among observers in BC grading. Here we propose an objective Haematoxylin & Eosin (H&E) image-based prognostic marker for early-stage luminal/Her2-negative BReAst CancEr that we term as the BRACE marker. The proposed BRACE marker is derived from AI based assessment of heterogeneity in BC at a detailed level using the power of deep learning. The prognostic ability of the marker is validated in two well-annotated cohorts (Cohort-A/Nottingham: n = 2122 and Cohort-B/Coventry: n = 311) on early-stage luminal/HER2-negative BC patients treated with endocrine therapy and with long-term follow-up. The BRACE marker is able to stratify patients for both distant metastasis free survival (p = 0.001, C-index: 0.73) and BC specific survival (p < 0.0001, C-index: 0.84) showing comparable prediction accuracy to Nottingham Prognostic Index and Magee scores, which are both derived from manual histopathological assessment, to identify luminal BC patients that may be likely to benefit from adjuvant chemotherapy

    Semantic annotation for computational pathology : multidisciplinary experience and best practice recommendations

    Get PDF
    Recent advances in whole‐slide imaging (WSI) technology have led to the development of a myriad of computer vision and artificial intelligence‐based diagnostic, prognostic, and predictive algorithms. Computational Pathology (CPath) offers an integrated solution to utilise information embedded in pathology WSIs beyond what can be obtained through visual assessment. For automated analysis of WSIs and validation of machine learning (ML) models, annotations at the slide, tissue, and cellular levels are required. The annotation of important visual constructs in pathology images is an important component of CPath projects. Improper annotations can result in algorithms that are hard to interpret and can potentially produce inaccurate and inconsistent results. Despite the crucial role of annotations in CPath projects, there are no well‐defined guidelines or best practices on how annotations should be carried out. In this paper, we address this shortcoming by presenting the experience and best practices acquired during the execution of a large‐scale annotation exercise involving a multidisciplinary team of pathologists, ML experts, and researchers as part of the Pathology image data Lake for Analytics, Knowledge and Education (PathLAKE) consortium. We present a real‐world case study along with examples of different types of annotations, diagnostic algorithm, annotation data dictionary, and annotation constructs. The analyses reported in this work highlight best practice recommendations that can be used as annotation guidelines over the lifecycle of a CPath project

    Assessment of proliferation in breast cancer: cell cycle or mitosis? An observational study

    No full text
    Background and aims: Proliferation is an important indicator of breast cancer (BC) prognosis, but is assessed using different approaches. Not all cells in the cell cycle are committed to division. This study aimed to characterise quantitative differences between BC cells in the cell cycle and those in mitosis and assess their relationship with other pathological parameters. Methods and results: A cohort of BC sections (n=621) was stained with haematoxylin and eosin and immunohistochemistry for Ki-67. The proportion of mitotic cells and Ki-67-positive cells was assessed in the same areas. The Cancer Genome Atlas (TCGA) BC cohort was used to assess MKI-67 transcriptome level and its association with the mitotic counts. The mean proportion of BC cells in the cell cycle was 24% (range=1–90%), while the mean proportion of BC cells in mitosis was 5% (range=0–73%). A low proportion of mitoses to whole cycling cells was associated with low histological grade tumours and the luminal A molecular subtype, while tumours with a high proportion of mitoses to the overall cycling cells were associated with triple-negative subtype, larger tumour size, grade 3 tumours and lymph node metastasis. The high mitosis/low Ki-67-positive cells tumours showed a significant association with variables of poor prognosis, including high-grade and triple-negative subtypes. Conclusion: The proportion of BC cells in the cell cycle and mitosis is variable. We show that not only the number of cells in the cell cycle or mitosis, but also the difference between them, provides valuable information on tumour aggressiveness
    corecore