5 research outputs found

    Laser-induced breakdown spectroscopy of cyanobacteria in carbonate matrices under simulated Martian environment

    Get PDF
    The finding on the Martian surface of hydrated salt minerals, like carbonates and sulphates, and their interpretation as deriving from the desiccation of old bodies of water, has provided an evidence of liquid water activity on the surface of Mars [1]. These evaporite environments and their saline deposits are now a chief goal for planetary missions devoted to the search for fossil Martian life. Such minerals have the possibility of trapping and preserving over geologic times a biological record made up of halophilic extremophiles [1]. The existence of species of cyanobacteria that inhabit rock substrates on Earth, capable of growing in environments considered extreme, makes them ideal organisms for studying biological responses in different environmental conditions [2]. One possible organism detection strategy consists in the study of the most relevant emission lines and molecular bands attributed to presence of life by laser-induced breakdown spectroscopy (LIBS). However, the detection of these species can be complex as LIBS is sensitive to environmental conditions, such as the atmosphere composition and pressure, and could contribute to this signal [3]. In the present study, several species of cyanobacteria with dissimilar extremophilic characteristics [4] (tolerance to desiccation and salinity) were examined by LIBS. The identification and discrimination of cyanobacteria on carbonate substrates was based on organic signal emissions (C, C2, CN...) and the presence of other microelements (Fe, Si, Cu, K…). For this purpose, and to evaluate the influence of the surrounding atmosphere on the plasma composition and its contribution on LIBS signal, a set of samples including Arthrospira platensis (commercial), Microcystys aeruginosa (cultured) and Chroococcidiopsis sp. (natural samples) was analyzed under i) Mars-analogue atmosphere and ii) low air vacuum (7mbar)Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Caracterización multianalítica de meteorito marciano NWA2975 mediante CF-LIBS, fluorescencia de rayos X y espectroscopía Raman

    Get PDF
    La caracterización isotópica y elemental de los meteoritos de Marte ha permitido determinar la cronología de los procesos de formación del planeta y avanzar en la comprensión de su evolución biogeoquímica e hidrológica. Los meteoritos más abundantes son las rocas de origen ígneo, como las shergottitas. Los estudios petrológicos y geoquímicos previos del meteorito Northwest Africa 2975 (NWA 2975), revelaron que se trata de una roca volcánica de grano medio, entre subofítica y granular, compuesta predominantemente por piroxenos (57,3 vol.%) y plagioclasa (38,3 vol. %) completamente enmascarados con fases opacas (2,7 vol.%) y fosfatos (1,7 vol.%) [1]. El instrumento SuperCam a bordo del rover Perseverance (misión MARS 2020 de la NASA) está equipado con técnicas atómicas y moleculares (incluyendo LIBS y Raman) para la detección y análisis a distancia de muestras geológicas en la superficie del Planeta Rojo. La capacidad de estas técnicas se ha demostrado ampliamente en la caracterización de rocas, minerales y suelos en varias misiones espaciales. En el presente trabajo, se analizó un fragmento del meteorito NWA 2975 mediante un sistema de micro-LIBS con el objetivo de revelar su composición química elemental. Debido a la heterogeneidad intrínseca de la muestra, se analizaron diferentes posiciones de su superficie. El análisis cuantitativo de los elementos principales (Si, Al, Fe, Mg, Mn, Ca y O) y de otros elementos menores se llevó a cabo utilizando la metodología Calibration-Free [2]. Los resultados sugieren la presencia de piroxenos como principal componente mineral en las posiciones inspeccionadas, aunque también se pueden encontrar otras fases minerales como la plagioclasa. La información extraída del análisis LIBS se ha comparado con la de fluorescencia de rayos X (XRF) y la espectroscopia Raman. El uso combinado de diferentes técnicas espectroscópicas ha permitido obtener una mejor interpretación de los resultados composicionales.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    LIBS and Acoustic Measurements of Rocks and Regolith Found in the Traverse of the Perseverance Rover Across the Jezero Crater, Mars

    Get PDF
    The SuperCam instrument of the NASA MARS 2020 Perseverance rover combines a suite of atomic and molecular spectroscopies intended for an extensive description of rocks, soils and minerals in the surroundings of the landing site of the mission – the Jezero crater. The microphone installed on the SuperCam instrument allows the acquisition of acoustic signals resulting from the expansion of laser-induced plasmas towards the atmosphere. Apart from being affected by the propagation characteristics of the Mars atmosphere, the acoustic signal has an additional component related to the properties of the target including surface morphology, hardness, deformation parameters, and elasticity, among others. This information is currently being investigated as a complementary resource for characterization of the ablated material and may well supplement the LIBS data gathered from coincident laser shots. This talk will present SuperCam acoustic data of rocks and minerals found in the traverse of the Perseverance rover and will discuss its correlation with LIBS spectra.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tec

    The sound of geological targets on Mars from the absolute intensity of laser-induced sparks shock waves

    Get PDF
    Inspection of geological material is one of the main goals of the Perseverance rover during its journey across the landscape of the Jezero crater in Mars. NASA's rover integrates SuperCam, an instrument capable of performing standoff characterization of samples using a variety of techniques. Among those tools, SuperCam can perform laser-induced breakdown spectroscopy (LIBS) studies to elucidate the chemical composition of the targets of interest. Data from optical spectroscopy can be supplemented by simultaneously-produced laser-produced plasma acoustics in order to expand the information acquired from the probed rocks thanks to the SuperCam's microphone (MIC) as it can be synchronized with the LIBS laser. Herein, we report cover results from LIBS and MIC during Perseverance's first 380 sols on the Martian surface. We study the correlation between both recorded signals, considering the main intrasample and environmental sources of variation for each technique, to understand their behavior and how they can be interpreted together towards complimenting LIBS with acoustics. We find that louder and more stable acoustic signals are recorded from rock with compact surfaces, i.e., low presence loose particulate material, and harder mineral phases in their composition. Reported results constitute the first description of the evolution of the intensity in the time domain of shockwaves from laser-produced plasmas on geological targets recorded in Mars. These signals are expected contain physicochemical signatures pertaining to the inspected sampling positions. As the dependence of the acoustic signal recorded on the sample composition, provided by LIBS, is unveiled, the sound from sparks become a powerful tool for the identification of mineral phases with similar optical emission spectra.Many people helped with this project in addition to the co-authors, including hardware and operation teams, and we are most grateful for their support. This project was supported in the USA by NASA’s Mars Exploration Program and in France is conducted under the authority of CNES. Research funded by projects UMA18-FEDERJA-272 from Junta de Andalucía and PID2020-119185GB-I00 from Ministerio de Ciencia e Innovacion, of Spain. P.P. is grateful to the European Union’s Next Generation EU (NGEU) plan and the Spanish Ministerio de Universidades for his Margarita Salas fellowship under the program ′′Ayudas para la Recualificacion del Sistema Universitario Español′′. RCW was funded by JPL contract 1681089. A.U was funded by NASA Mars 2020 Participating Scientist program 80NSSC21K0330. Funding for open access charge: Universidad de Málaga / CBU

    Understanding The Correlation Of Libs And Acoustic Measurements Of Rocks And Soils Found In The Traverse Of The Perseverance Rover Across The Jezero Crater, Mars

    Get PDF
    The SuperCam instrument of the NASA MARS 2020 Perseverance rover combines a suite of atomic and molecular spectroscopies intended for an extensive description of rocks, soils and minerals in the surroundings of the landing site of the mission – the Jezero crater. The microphone installed on the SuperCam instrument allows the acquisition of acoustic signals resulting from the expansion of laser-induced plasmas towards the atmosphere. Apart from being affected by the propagation characteristics of the Mars atmosphere, the acoustic signal has an additional component related to the properties of the target including surface morphology, hardness, deformation parameters, and elasticity, among others. This information is currently being investigated as a complementary resource for characterization of the ablated material and may well supplement the LIBS data gathered from coincident laser shots. This talk will present SuperCam acoustic data of rocks and minerals found in the traverse of the Perseverance rover and will discuss its correlation with LIBS spectra.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tec
    corecore