8 research outputs found

    Grain refinement of magnesium alloys: a review of recent research, theoretical developments and their application

    Get PDF
    This paper builds on the ‘‘Grain Refinement of Mg Alloys’’ published in 2005 and reviews the grain refinement research onMg alloys that has been undertaken since then with an emphasis on the theoretical and analytical methods that have been developed. Consideration of recent research results and current theoretical knowledge has highlighted two important factors that affect an alloy’s as-cast grain size. The first factor applies to commercial Mg-Al alloys where it is concluded that impurity and minor elements such as Fe and Mn have a substantially negative impact on grain size because, in combination with Al, intermetallic phases can be formed that tend to poison the more potent native or deliberately added nucleant particles present in the melt. This factor appears to explain the contradictory experimental outcomes reported in the literature and suggests that the search for a more potent and reliable grain refining technology may need to take a different approach. The second factor applies to all alloys and is related to the role of constitutional supercooling which, on the one hand, promotes grain nucleation and, on the other hand, forms a nucleation-free zone preventing further nucleation within this zone, consequently limiting the grain refinement achievable, particularly in low solute-containing alloys. Strategies to reduce the negative impact of these two factors are discussed. Further, the Interdependence model has been shown to apply to a broad range of casting methods from slow cooling gravity die casting to fast cooling high pressure die casting and dynamic methods such as ultrasonic treatment

    Atom probe tomography of solute distributions in mg-based alloys

    Full text link
    Atom probe tomography (APT) has been carried out on three magnesium-based alloys: M1 (Mg-1 wt pct Mn), AZ31(Mg-3 pct Al-1 pct Zn), and ME10 (Mg-1 pct Mn- 0.4 pct misch metal). The aims of this experiment were to measure the composition of the matrix and to investigate solute clustering in the matrix of the three different alloys. For AZ31, the matrix composition was variable but close to the bulk composition. For ME10 and M1, the matrix was depleted in alloying additions, with the remainder residing in precipitates. Most alloying additions were found to exhibit clustering to some extent, with misch metal having the strongest partitioning behavior to clusters. Solute clusters did not appear to affect mechanical twinning. It has been proposed that the clustering behavior of misch metal contributes to its ability to modify the recrystallization texture.<br /

    Retinopathy of Prematurity

    No full text
    corecore