5 research outputs found

    Noncommutative Schur polynomials and the crystal limit of the U_q sl(2)-vertex model

    Full text link
    Starting from the Verma module of U_q sl(2) we consider the evaluation module for affine U_q sl(2) and discuss its crystal limit (q=0). There exists an associated integrable statistical mechanics model on a square lattice defined in terms of vertex configurations. Its transfer matrix is the generating function for noncommutative complete symmetric polynomials in the generators of the affine plactic algebra, an extension of the finite plactic algebra first discussed by Lascoux and Sch\"{u}tzenberger. The corresponding noncommutative elementary symmetric polynomials were recently shown to be generated by the transfer matrix of the so-called phase model discussed by Bogoliubov, Izergin and Kitanine. Here we establish that both generating functions satisfy Baxter's TQ-equation in the crystal limit by tying them to special U_q sl(2) solutions of the Yang-Baxter equation. The TQ-equation amounts to the well-known Jacobi-Trudy formula leading naturally to the definition of noncommutative Schur polynomials. The latter can be employed to define a ring which has applications in conformal field theory and enumerative geometry: it is isomorphic to the fusion ring of the sl(n)_k -WZNW model whose structure constants are the dimensions of spaces of generalized theta-functions over the Riemann sphere with three punctures.Comment: 24 pages, 6 figures; v2: several typos fixe

    On the uniqueness of promotion operators on tensor products of type A crystals

    Get PDF
    The affine Dynkin diagram of type An(1)A_n^{(1)} has a cyclic symmetry. The analogue of this Dynkin diagram automorphism on the level of crystals is called a promotion operator. In this paper we show that the only irreducible type AnA_n crystals which admit a promotion operator are the highest weight crystals indexed by rectangles. In addition we prove that on the tensor product of two type AnA_n crystals labeled by rectangles, there is a single connected promotion operator. We conjecture this to be true for an arbitrary number of tensor factors. Our results are in agreement with Kashiwara's conjecture that all `good' affine crystals are tensor products of Kirillov-Reshetikhin crystals.Comment: 31 pages; 8 figure

    J

    No full text
    corecore