1,799 research outputs found

    The associated production of t¯tH in ATLAS

    Get PDF
    Since its discovery in July 2012, it has become mandatory to study the couplings of the Higgs boson with other Standard Model particles. The associated production of Higgs and top-antitop pairs (t¯tH) gives direct access to the Higgs-top couplings. Due to the different decay modes of the t¯t pairs and of the Higgs boson, the process displays a large variety of decay channels involving in the final state, b¯b pairs, γγ and multileptonic (including τ ) states. Although the sensitivity is still limited by the Run I statistics, the assessment of the analysis methods will be essential for constraining the t-H coupling using the data collected from 2015 at ATLAS at LHC. These include background estimation, selection optimization and systematics control

    The phase II ATLAS Pixel: The Inner Tracker (ITk)

    Get PDF
    The ATLAS experiment is expected to enter the high-luminosity programme of the LHC (HL-LHC) with a thoroughly upgraded detector. This includes an all-silicon tracking system Inner Tracker (ITk) that will completely replace the current Inner Detector. The innermost part of the ITk will consist of a five-layer pixel detector in the barrel region complemented by two end-caps characterized by annular supports leading to an extended track reconstruction coverage. Different sensor technologies (planar, 3D and CMOS) are being investigated for instrumenting the detector, which will need to cope with the high occupancy and radiation level that are expected in the HL-LHC environment. For the same reason a new front-end chip is being developed within the RD53 Collaboration. High data rates, expected in particular in the innermost layers, require the development of new technologies allowing high bandwidth transmission and handling

    A search for the dimuon decay of the Standard Model Higgs boson with the ATLAS detector

    Get PDF
    A search for the dimuon decay of the Standard Model (SM) Higgs boson is performed using data corresponding to an integrated luminosity of 139 fb−1 collected with the ATLAS detector in Run 2 pp collisions at √s = 13 TeV at the Large Hadron Collider. The observed (expected) significance over the background-only hypothesis for a Higgs boson with a mass of 125.09 GeV is 2.0σ (1.7σ). The observed upper limit on the cross section times branching ratio for pp → H → μμ is 2.2 times the SM prediction at 95% confidence level, while the expected limit on a H → μμ signal assuming the absence (presence) of a SM signal is 1.1 (2.0). The best-fit value of the signal strength parameter, defined as the ratio of the observed signal yield to the one expected in the SM, is μ = 1.2 ± 0.6

    Measurements of top-quark pair single- and double-differential cross-sections in the all-hadronic channel in pp collisions at √s = 13 TeV using the ATLAS detector

    Get PDF
    Differential cross-sections are measured for top-quark pair production in the all-hadronic decay mode, using proton-proton collision events collected by the ATLAS experiment in which all six decay jets are separately resolved. Absolute and normalised single- and double-differential cross-sections are measured at particle and parton level as a function of various kinematic variables. Emphasis is placed on well-measured observables in fully reconstructed final states, as well as on the study of correlations between the top-quark pair system and additional jet radiation identified in the event. The study is performed using data from proton-proton collisions at √s = 13 TeV collected by the ATLAS detector at CERN’s Large Hadron Collider in 2015 and 2016, corresponding to an integrated luminosity of 36.1 fb−1. The rapidities of the individual top quarks and of the top-quark pair are well modelled by several independent event generators. Significant mismodelling is observed in the transverse momenta of the leading three jet emissions, while the leading top-quark transverse momentum and top-quark pair transverse momentum are both found to be incompatible with several theoretical predictions

    Operation of the ATLAS trigger system in Run 2

    Get PDF
    The ATLAS experiment at the Large Hadron Collider employs a two-level trigger system to record data at an average rate of 1 kHz from physics collisions, starting from an initial bunch crossing rate of 40 MHz. During the LHC Run 2 (2015–2018), the ATLAS trigger system operated successfully with excellent performance and flexibility by adapting to the various run conditions encountered and has been vital for the ATLAS Run-2 physics programme. For proton-proton running, approximately 1500 individual event selections were included in a trigger menu which specified the physics signatures and selection algorithms used for the data-taking, and the allocated event rate and bandwidth. The trigger menu must reflect the physics goals for a given data collection period, taking into account the instantaneous luminosity of the LHC and limitations from the ATLAS detector readout, online processing farm, and offline storage. This document discusses the operation of the ATLAS trigger system during the nominal proton-proton data collection in Run 2 with examples of special data-taking runs. Aspects of software validation, evolution of the trigger selection algorithms during Run 2, monitoring of the trigger system and data quality as well as trigger configuration are presented

    Two-particle azimuthal correlations in photonuclear ultraperipheral Pb+Pb collisions at 5.02 TeV with ATLAS

    Get PDF
    Two-particle long-range azimuthal correlations are measured in photonuclear collisions using 1.7 nb−1 of 5.02 TeV Pb+Pb collision data collected by the ATLAS experiment at the CERN Large Hadron Collider. Candidate events are selected using a dedicated high-multiplicity photonuclear event trigger, a combination of information from the zero-degree calorimeters and forward calorimeters, and from pseudorapidity gaps constructed using calorimeter energy clusters and charged-particle tracks. Distributions of event properties are compared between data and Monte Carlo simulations of photonuclear processes. Two-particle correlation functions are formed using charged-particle tracks in the selected events, and a template-fitting method is employed to subtract the nonflow contribution to the correlation. Significant nonzero values of the secondand third-order flow coefficients are observed and presented as a function of charged-particle multiplicity and transverse momentum. The results are compared with flow coefficients obtained in proton-proton and proton-lead collisions in similar multiplicity ranges, and with theoretical expectations. The unique initial conditions present in this measurement provide a new way to probe the origin of the collective signatures previously observed only in hadronic collisions

    Search for bottom-squark pair production in pp collision events at s=13  TeV with hadronically decaying τ -leptons, b -jets, and missing transverse momentum using the ATLAS detector

    Get PDF
    A search for pair production of bottom squarks in events with hadronically decaying τ-leptons, b-tagged jets, and large missing transverse momentum is presented. The analyzed dataset is based on proton-proton collisions at √s=13 TeV delivered by the Large Hadron Collider and recorded by the ATLAS detector from 2015 to 2018, and corresponds to an integrated luminosity of 139 fb−1. The observed data are compatible with the expected Standard Model background. Results are interpreted in a simplified model where each bottom squark is assumed to decay into the second-lightest neutralino ˜χ02 and a bottom quark, with ˜χ02 decaying into a Higgs boson and the lightest neutralino ˜χ01. The search focuses on final states where at least one Higgs boson decays into a pair of hadronically decaying τ-leptons. This allows the acceptance and thus the sensitivity to be significantly improved relative to the previous results at low masses of the ˜χ02, where bottom-squark masses up to 850 GeV are excluded at the 95% confidence level, assuming a mass difference of 130 GeV between ˜χ02 and ˜χ01. Model-independent upper limits are also set on the cross section of processes beyond the Standard Model

    Search for squarks and gluinos in final states with one isolated lepton, jets, and missing transverse momentum at √s=13 TeV with the ATLAS detector

    Get PDF
    The results of a search for gluino and squark pair production with the pairs decaying via the lightest charginos into a final state consisting of two W bosons, the lightest neutralinos (χ˜ 01 ), and quarks, are presented: the signal is characterised by the presence of a single charged lepton (e± or μ±) from a W boson decay, jets, and missing transverse momentum. The analysis is performed using 139 fb−1 of proton–proton collision data taken at a centre-of-mass energy √s = 13 delivered by the Large Hadron Collider and recorded by the ATLAS experiment. No statistically significant excess of events above the Standard Model expectation is found. Limits are set on the direct production of squarks and gluinos in simplified models. Masses of gluino (squark) up to 2.2 (1.4 ) are excluded at 95% confidence level for a light χ˜ 01
    • …
    corecore