5 research outputs found

    Complex of C60 fullerene with doxorubicin as a promising agent in antitumor therapy

    Get PDF
    The main aim of this work was to evaluate the effect of doxorubicin in complex with C60 fullerene (C60 + Dox) on the growth and metastasis of Lewis lung carcinoma in mice and to perform a primary screening of the potential mechanisms of C60 + Dox complex action. We found that volume of tumor from mice treated with the C60 + Dox complex was 1.4 times less than that in control untreated animals. The number of metastatic foci in lungs of animals treated with C60 + Dox complex was two times less than that in control untreated animals. Western blot analysis of tumor lysates revealed a significant decrease in the level of heat-shock protein 70 in animals treated with C60 + Dox complex. Moreover, the treatment of tumor-bearing mice was accompanied by the increase of cytotoxic activity of immune cells. Thus, the potential mechanisms of antitumor effect of C60 + Dox complex include both its direct action on tumor cells by inducing cell death and increasing of stress sensitivity and an immunomodulating effect. The obtained results provide a scientific basis for further application of C60 + Dox nanocomplexes as treatment agents in cancer chemotherapy

    C60 fullerene and its nanocomplexes with anticancer drugs modulate circulating phagocyte functions and dramatically increase ROS generation in transformed monocytes

    Get PDF
    Abstract Background C60 fullerene-based nanoformulations are proposed to have a direct toxic effect on tumor cells. Previous investigations demonstrated that C60 fullerene used alone or being conjugated with chemotherapeutic agents possesses a potent anticancer activity. The main aim of this study was to investigate the effect of C60 fullerene and its nanocomplexes with anticancer drugs on human phagocyte metabolic profile in vitro. Methods Analysis of the metabolic profile of phagocytes exposed to C60 fullerene in vitro revealed augmented phagocytic activity and down-regulated reactive nitrogen species generation in these cells. Additionally, cytofluorimetric analysis showed that C60 fullerene can exert direct cytotoxic effect on normal and transformed phagocytes through the vigorous induction of intracellular reactive oxygen species generation. Results Cytotoxic action as well as the pro-oxidant effect of C60 fullerene was more pronounced toward malignant phagocytes. At the same time, C60 fullerenes have the ability to down-regulate the pro-oxidant effect of cisplatin on normal cells. These results indicate that C60 fullerenes may influence phagocyte metabolism and have both pro-oxidant and antioxidant properties. Conclusions The antineoplastic effect of C60 fullerene has been observed by direct toxic effect on tumor cells, as well as through the modulation of the functions of effector cells of antitumor immunity

    C60 fullerene enhances cisplatin anticancer activity and overcomes tumor cell drug resistance

    No full text
    corecore