92 research outputs found

    Characterization of High-Fat, Diet-Induced, Non-alcoholic Steatohepatitis with Fibrosis in Rats

    Get PDF
    An ideal animal model is necessary for a clear understanding of the etiology, pathogenesis, and mechanisms of human non-alcoholic steatohepatitis (NASH) and for facilitating the design of effective therapy for this condition. We aimed to establish a rat model of NASH with fibrosis by using a high-fat diet (HFD). Male Sprague–Dawley (SD) rats were fed a HFD consisting of 88 g normal diet, 10 g lard oil, and 2 g cholesterol. Control rats were fed normal diet. Rats were killed at 4, 8, 12, 16, 24, 36, and 48 weeks after HFD exposure. Body weight, liver weight, and epididymal fat weight were measured. Serum levels of fasting glucose, triglyceride, cholesterol, alanine aminotransferase (ALT), free fatty acids (FFA), insulin, and tumor necrosis factor-alpha (TNF-α) were determined. Hepatic histology was examined by H&E stain. Hepatic fibrosis was assessed by VG stain and immunohistochemical staining for transforming growth factor beta 1 (TGF-β1), and alpha-smooth-muscle actin (α-SMA). The liver weight and liver index increased from week 4, when hepatic steatosis was also observed. By week 8, the body weight and epididymal fat weight started increasing, which was associated with increased serum levels of FFA, cholesterol, and TNF-α, as well as development of simple fatty liver. The serum ALT level increased from week 12. Steatohepatitis occurred from weeks 12 through 48. Apparent hepatic perisinosodial fibrosis did not occur until week 24, and progressed from week 36 to 48 with insulin resistance. Therefore, this novel model may be potentially useful in NASH study

    Increased Diacylglycerols Characterize Hepatic Lipid Changes in Progression of Human Nonalcoholic Fatty Liver Disease; Comparison to a Murine Model

    Get PDF
    The spectrum of nonalcoholic fatty liver disease (NAFLD) includes steatosis, nonalcoholic steatohepatitis (NASH), and progression to cirrhosis. While differences in liver lipids between disease states have been reported, precise composition of phospholipids and diacylglycerols (DAG) at a lipid species level has not been previously described. The goal of this study was to characterize changes in lipid species through progression of human NAFLD using advanced lipidomic technology and compare this with a murine model of early and advanced NAFLD.Utilizing mass spectrometry lipidomics, over 250 phospholipid and diacylglycerol species (DAGs) were identified in normal and diseased human and murine liver extracts.Significant differences between phospholipid composition of normal and diseased livers were demonstrated, notably among DAG species, consistent with previous reports that DAG transferases are involved in the progression of NAFLD and liver fibrosis. In addition, a novel phospholipid species (ether linked phosphatidylinositol) was identified in human cirrhotic liver extracts.Using parallel lipidomics analysis of murine and human liver tissues it was determined that mice maintained on a high-fat diet provide a reproducible model of NAFLD in regards to specificity of lipid species in the liver. These studies demonstrated that novel lipid species may serve as markers of advanced liver disease and importantly, marked increases in DAG species are a hallmark of NAFLD. Elevated DAGs may contribute to altered triglyceride, phosphatidylcholine (PC), and phosphatidylethanolamine (PE) levels characteristic of the disease and specific DAG species might be important lipid signaling molecules in the progression of NAFLD

    Upregulation of Hemoglobin Expression by Oxidative Stress in Hepatocytes and Its Implication in Nonalcoholic Steatohepatitis

    Get PDF
    Recent studies revealed that hemoglobin is expressed in some non-erythrocytes and it suppresses oxidative stress when overexpressed. Oxidative stress plays a critical role in the pathogenesis of non-alcoholic steatohepatitis (NASH). This study was designed to investigate whether hemoglobin is expressed in hepatocytes and how it is related to oxidative stress in NASH patients. Analysis of microarray gene expression data revealed a significant increase in the expression of hemoglobin alpha (HBA1) and beta (HBB) in liver biopsies from NASH patients. Increased hemoglobin expression in NASH was validated by quantitative real time PCR. However, the expression of hematopoietic transcriptional factors and erythrocyte specific marker genes were not increased, indicating that increased hemoglobin expression in NASH was not from erythropoiesis, but could result from increased expression in hepatocytes. Immunofluorescence staining demonstrated positive HBA1 and HBB expression in the hepatocytes of NASH livers. Hemoglobin expression was also observed in human hepatocellular carcinoma HepG2 cell line. Furthermore, treatment with hydrogen peroxide, a known oxidative stress inducer, increased HBA1 and HBB expression in HepG2 and HEK293 cells. Importantly, hemoglobin overexpression suppressed oxidative stress in HepG2 cells. We concluded that hemoglobin is expressed by hepatocytes and oxidative stress upregulates its expression. Suppression of oxidative stress by hemoglobin could be a mechanism to protect hepatocytes from oxidative damage in NASH

    LDL Receptor Knock-Out Mice Are a Physiological Model Particularly Vulnerable to Study the Onset of Inflammation in Non-Alcoholic Fatty Liver Disease

    Get PDF
    Non-alcoholic steatohepatitis (NASH) involves steatosis combined with inflammation, which can progress into fibrosis and cirrhosis. Exploring the molecular mechanisms of NASH is highly dependent on the availability of animal models. Currently, the most commonly used animal models for NASH imitate particularly late stages of human disease. Thus, there is a need for an animal model that can be used for investigating the factors that potentiate the inflammatory response within NASH. We have previously shown that 7-day high-fat-high-cholesterol (HFC) feeding induces steatosis and inflammation in both APOE2ki and Ldlr(-/-) mice. However, it is not known whether the early inflammatory response observed in these mice will sustain over time and lead to liver damage. We hypothesized that the inflammatory response in both models is sufficient to induce liver damage over time.APOE2ki and Ldlr(-/-) mice were fed a chow or HFC diet for 3 months. C57Bl6/J mice were used as control.Surprisingly, hepatic inflammation was abolished in APOE2ki mice, while it was sustained in Ldlr(-/-) mice. In addition, increased apoptosis and hepatic fibrosis was only demonstrated in Ldlr(-/-) mice. Finally, bone-marrow-derived-macrophages of Ldlr(-/-) mice showed an increased inflammatory response after oxidized LDL (oxLDL) loading compared to APOE2ki mice.Ldlr(-/-) mice, but not APOE2ki mice, developed sustained hepatic inflammation and liver damage upon long term HFC feeding due to increased sensitivity for oxLDL uptake. Therefore, the Ldlr(-/-) mice are a promising physiological model particularly vulnerable for investigating the onset of hepatic inflammation in non-alcoholic steatohepatitis

    Hepatic free fatty acids accumulate in experimental steatohepatitis: Role of adaptive pathways

    No full text
    Background/Aims: We determined the effects of dietary lipid composition on steatohepatitis development with particular attention to the nature of lipid molecules that accumulate in the liver and pathways of hepatic triglyceride synthesis. Methods: Mice were fed methionine and choline deficient (MCD) diets supplemented with 20% fat as lard (saturated) or olive oil (monounsaturated), for 3 weeks. Results: Irrespective of dietary lipid composition, MCD-fed mice developed steatosis, ballooning degeneration and lobular inflammation. MCD-feeding increased hepatic free fatty acid (FFA) levels 2-3-fold, as well as total triglyceride levels. Hepatic FFA composition was characterized by increased ratio of monounsaturated: saturated FFA. There were reduced nuclear levels of the lipogenic transcription factor sterol regulatory element binding protein-1 in MCD-fed mice, but no consistent reduction in fatty acid synthesis genes (acetyl-CoA carboxylase and fatty acid synthase). Consistent with pathways of hepatic triglyceride synthesis, expression of diacylglycerol acyltransferase-1 and -2 was increased, as were delta-5- and delta-6- fatty acid desaturase mRNA levels. Conclusions: In this nutritional model of steatohepatitis, accumulation of FFA occurs despite substantial suppression of lipogenesis and induction of triglyceride synthesis genes. Accumulation of FFA supports a lipotoxicity mechanism for liver injury in this form of fatty liver disease. © 2008 European Association for the Study of the Liver.link_to_subscribed_fulltex
    corecore