8,906 research outputs found
Performance analysis of large scale MU-MIMO with optimal linear receivers
We consider the uplink of multicell multiuser MIMO (MU-MIMO) systems with very large antenna arrays at the base station (BS). We assume that the BS estimates the channel through uplink training, and then uses this channel estimate to detect the signals transmitted from a multiplicity of autonomous users in its cell. By taking the correlation between the channel estimate and the interference from other cells into account, we propose an optimal linear receiver (OLR) which maximizes the received signal-to-interference-plus-noise (SINR). Analytical approximations of the exact and lower bound on the achievable rate are then derived. The bound is very tight, especially at large number of BS antennas. We show that at low SINR, maximalratio combing (MRC) receiver performs as well as OLR, however at high SINR, OLR outperforms MRC. Compared with the typical minimum mean-square error receiver, our proposed OLR improves systematically the system performance, especially when the interference is large
Disoriented Chiral Condensates in Hadron-Hadron Collisions
We review recent progress in the description and understanding of disoriented
chiral condensates. Certain important unsolved issues are underlined, and the
preliminary results of our program of investigation of these issues in the
framework of the classical linear sigma model are reported. We also briefly
review a formalism which could be useful at the full non-equilibrium quantum
field theory level of analysis.Comment: 9 pages, LaTex. Presented by G. Amelino-Camelia at the 10th
International Conference on Problems of Quantum Field Theory, Alushta,
Crimea, Ukraine, May 13-18, 1996. To appear in the proceeding
Violation of local realism vs detection efficiency
We put bounds on the minimum detection efficiency necessary to violate local
realism in Bell experiments. These bounds depends of simple parameters like the
number of measurement settings or the dimensionality of the entangled quantum
state. We derive them by constructing explicit local-hidden variable models
which reproduce the quantum correlations for sufficiently small detectors
efficiency.Comment: 6 pages, revtex. Modifications in the discussion for many parties in
section 3, small erros and typos corrected, conclusions unchange
Testing for Multipartite Quantum Nonlocality Using Functional Bell Inequalities
We show that arbitrary functions of continuous variables, e.g. position and
momentum, can be used to generate tests that distinguish quantum theory from
local hidden variable theories. By optimising these functions, we obtain more
robust violations of local causality than obtained previously. We analytically
calculate the optimal function and include the effect of nonideal detectors and
noise, revealing that optimized functional inequalities are resistant to
standard forms of decoherence. These inequalities could allow a loophole-free
Bell test with efficient homodyne detection
Resolving the shocked gas in HH54 with Herschel: CO line mapping at high spatial and spectral resolution
The HH54 shock is a Herbig-Haro object, located in the nearby Chamaeleon II
cloud. Observed CO line profiles are due to a complex distribution in density,
temperature, velocity, and geometry. Resolving the HH54 shock wave in the
far-infrared cooling lines of CO constrain the kinematics, morphology, and
physical conditions of the shocked region. We used the PACS and SPIRE
instruments on board the Herschel space observatory to map the full FIR
spectrum in a region covering the HH54 shock wave. Complementary Herschel-HIFI,
APEX, and Spitzer data are used in the analysis as well. The observed features
in the line profiles are reproduced using a 3D radiative transfer model of a
bow-shock, constructed with the Line Modeling Engine code (LIME). The FIR
emission is confined to the HH54 region and a coherent displacement of the
location of the emission maximum of CO with increasing J is observed. The peak
positions of the high-J CO lines are shifted upstream from the lower J CO lines
and coincide with the position of the spectral feature identified previously in
CO(10-9) profiles with HIFI. This indicates a hotter molecular component in the
upstream gas with distinct dynamics. The coherent displacement with increasing
J for CO is consistent with a scenario where IRAS12500-7658 is the exciting
source of the flow, and the 180 K bow-shock is accompanied by a hot (800 K)
molecular component located upstream from the apex of the shock and blueshifted
by -7 km s. The spatial proximity of this knot to the peaks of the
atomic fine-structure emission lines observed with Spitzer and PACS ([OI]63,
145 m) suggests that it may be associated with the dissociative shock as
the jet impacts slower moving gas in the HH54 bow-shock.Comment: 6 pages, 5 figure
- …