6 research outputs found

    Allergic airway disease : studies on diesel exhaust exposures, oxylipins and antioxidants

    No full text
    Allergic airway disease, i.e. allergic rhinitis (AR) and asthma, is a common health problem. The prevalence is increasing in most countries of the world. Traffic-related air pollution has been found to induce and enhance allergic airway disease, but the underlying mechanisms are not known. Oxylipins are fatty acid metabolites, of which several have been linked to asthmatic airway inflammation. Oxylipin profiles have previously been investigated in bronchoalveolar lavage (BAL), mainly reflecting the peripheral lung, but not in bronchial wash (BW), which better reflect the proximal airways. The airway epithelium is covered by a respiratory tract lining fluid (RTLF) The RTLF contains antioxidants to protect from oxidative stress, which may be caused by exposure to air pollution. Previous studies have reported diminished levels of the antioxidant ascorbate (vitamin C) in the RTLF of patients with asthma. Little is known about the regulation of vitamin C in the lung. The aim of this thesis was to investigate airway inflammatory responses to diesel exhaust exposure in patients with AR and allergic asthma; to evaluate oxylipin profiles in different regions of the lung in patients with allergic asthma; and to study the distribution of vitamin C transporters in the airways of patients with allergic asthma. Diesel exhaust (PM10 100 μg/m3 for 2 h) induced a neutrophilic airway inflammation in healthy individuals evaluated 18 h after exposure. Patients with AR and asthma did not respond with an enhanced airway inflammation. However, a small increase in myeloperoxidase was found in BAL from patients with AR, as well as decreases in epithelial tryptase and BW stem cell factor. This indicates that other mechanisms than classical inflammation are responsible for the increased sensitivity to traffic-related air pollution in patients with allergic airway disease. Oxylipin baseline profiles differed between peripheral and proximal airways in both allergic asthmatics and healthy individuals. Total oxylipin concentrations, and five individual oxylipins, primarily from the lipoxygenase (LOX) pathway, were elevated in BW from asthmatics compared to healthy controls, supported by immunohistochemical staining of 15-LOX-1 in the bronchial epithelium. This suggests that lung compartment-specific sampling should be considered in future studies. Sodium dependent vitamin C transporter 2 (SVCT2) was, for the first time, found present in the human lung epithelium, localised mainly within goblet cells. A negative correlation between SVCT2+ goblet cells and vitamin C suggests that these cells may play a hitherto unknown function in ascorbate re-uptake and recycling at the air-lung interface

    Self-compassion, perfectionism, impostor phenomenon, stress and anxiety in patients with localized provoked vulvodynia

    No full text
    Studies have shown that psychological distress has a role in the symptomology of localized provoked vulvodynia. Therefore, psychosocial support has been presented as a valuable part of the treatment. However, little is known about which psychological variables that coincide with localized provoked vulvodynia. The purpose of this study was to identify qualities of psychological distress in patients with localized provoked vulvodynia. Patients with localized provoked vulvodynia were consecutively recruited to participate in this cross-sectional questionnaire-based study. Participants completed a self-report questionnaire measuring perfectionism, impostor phenomenon, self-compassion, anxiety and perceived stress. A sample of 30 patients were included. Questionnaire results suggestive of perfectionism was seen in 63%, impostor phenomenon in 80%, low self-compassion in 27%, anxiety in 43% and perceived stress in 23% of the participants. The level of self-compassion was higher in patients in a committed relationship. The investigated qualities appear to be more common in patients with localized provoked vulvodynia than in comparable groups. Impostor phenomenon and perfectionism were particularly common, with more than half of the study population scoring above the cutoff for clinical significance. This motivates research to investigate if interventions targeting impostor phenomenon and perfectionism, may aid in the treatment of localized provoked vulvodynia

    Airway inflammatory responses to diesel exhaust in allergic rhinitics

    No full text
    CONTEXT: Proximity to traffic, particularly to diesel-powered vehicles, has been associated with inducing and enhancing allergies. To investigate the basis for this association, we performed controlled exposures of allergic rhinitics to diesel exhaust (DE) at a dose known to be pro-inflammatory in healthy individuals.OBJECTIVE: We hypothesized that diesel-exhaust exposure would augment lower airway inflammation in allergic rhinitics.MATERIALS AND METHODS: Fourteen allergic rhinitics were exposed in a double-blinded, randomized trial to DE (100??g/m³ PM??) and filtered air for 2?h on separate occasions. Bronchoscopy with endobronchial mucosal biopsies and airway lavage was performed 18?h post-exposure, and inflammatory markers were assessed.RESULTS: No evidence of neutrophilic airway inflammation was observed post-diesel, however, a small increase in myeloperoxidase was found in bronchoalveolar lavage (p?=?0.032). We found no increases in allergic inflammatory cells. Reduced mast cell immunoreactivity for tryptase was observed in the epithelium (p?=?0.013) parallel to a small decrease in bronchial wash stem cell factor (p?=?0.033).DISCUSSION AND CONCLUSION: DE, at a dose previously shown to cause neutrophilic inflammation in healthy individuals, induced no neutrophilic inflammation in the lower airways of allergic rhinitics, consistent with previous reports in asthmatics. Although there was no increase in allergic inflammatory cell numbers, the reduction in tryptase in the epithelium may indicate mast cell degranulation. However, this occurred in the absence of allergic symptoms. These data do not provide a simplistic explanation of the sensitivity in rhinitics to traffic-related air pollution. The role of mast cells requires further investigation

    Identification of vitamin C transporters in the human airways:A cross-sectional in vivo study

    No full text
    Objectives: Vitamin C is an important low-molecular weight antioxidant at the air-lung interface. Despite its critical role as a sacrificial antioxidant, little is known about its transport into the respiratory tract lining fluid (RTLF), or the underlying airway epithelial cells. While several vitamin C transporters have been identified, such as sodium-ascorbate cotransporters (SVCT1/2) and glucose transporters (GLUTs), the latter transporting dehydroascorbate, knowledge of their protein distribution within the human lung is limited, in the case of GLUTs or unknown for SVCTs. Setting and participants: Protein expression of vitamin C transporters (SVCT1/2 and GLUT1-4) was examined by immunohistochemistry in endobronchial biopsies, and by FACS in airway leucocytes from lavage fluid, obtained from 32 volunteers; 16 healthy and 16 mild asthmatic subjects. In addition, antioxidant concentrations were determined in RTLF. The study was performed at one Swedish centre. Primary and secondary outcome measures: The primary outcome measure was to establish the location of vitamin C transporters in the human airways. As secondary outcome measures, RTLF vitamin C concentration was measured and related to transporter expression, as well as bronchial epithelial inflammatory and goblet cells numbers. Results: Positive staining was identified for SVCT1 and 2 in the vascular endothelium. SVCT2 and GLUT2 were present in the apical bronchial epithelium, where SVCT2 staining was predominately localised to goblet cells and inversely related to RTLF vitamin C concentrations. Conclusions: This experimental study is the first to demonstrate protein expression of GLUT2 and SVCT2 in the human bronchial epithelium. A negative correlation between SVCT2-positive goblet cells and bronchial RTLF vitamin C concentrations suggests a possible role for goblet cells in regulating the extracellular vitamin C pool

    Proinflammatory doses of diesel exhaust in healthy subjects fail to elicit equivalent or augmented airway inflammation in subjects with asthma

    No full text
    Background Exposure to traffic-derived air pollutants, particularly diesel emissions, has been associated with adverse health effects, predominantly in individuals with pre-existing respiratory disease. Here the hypothesis that this heightened sensitivity reflects an augmentation of the transient inflammatory response previously reported in healthy adults exposed to diesel exhaust is examined.Methods 32 subjects with asthma (mild to moderate severity) and 23 healthy controls were exposed in a double-blinded crossover control fashion to both filtered air and diesel exhaust (100 μg/m3 PM10) for 2 h. Airway inflammation was assessed by bronchoscopy 18 h postexposure. In addition, lung function, fraction of exhaled nitric oxide and bronchial reactivity to metacholine were examined in the subjects with asthma.Results In healthy control subjects a significant increase in submucosal neutrophils (p=0.004) was observed following the diesel challenge. Significant increases in neutrophil numbers (p=0.01), and in the concentrations of interleukin 6 (p=0.03) and myeloperoxidase (p=0.04), were also seen in bronchial wash after diesel, relative to the control air challenge. No evidence of enhanced airway inflammation was observed in the subjects with asthma following the diesel exposure.Conclusions Exposure to diesel exhaust at concentrations consistent with roadside levels elicited an acute and active neutrophilic inflammation in the airways of healthy subjects. This response was absent in subjects with asthma, as was evidence supporting a worsening of allergic airway inflammation
    corecore