16,633 research outputs found
Scaling relations of supersonic turbulence in star-forming molecular clouds
We present a direct numerical and analytical study of driven supersonic MHD
turbulence that is believed to govern the dynamics of star-forming molecular
clouds. We describe statistical properties of the turbulence by measuring the
velocity difference structure functions up to the fifth order. In particular,
the velocity power spectrum in the inertial range is found to be close to E(k)
\~ k^{-1.74}, and the velocity difference scales as ~ L^{0.42}. The
results agree well with the Kolmogorov--Burgers analytical model suggested for
supersonic turbulence in [astro-ph/0108300]. We then generalize the model to
more realistic, fractal structure of molecular clouds, and show that depending
on the fractal dimension of a given molecular cloud, the theoretical value for
the velocity spectrum spans the interval [-1.74 ... -1.89], while the
corresponding window for the velocity difference scaling exponent is [0.42 ...
0.78].Comment: 17 pages, 6 figures include
Food products for space applications
Specially-prepared foodstuffs supply an astronaut with a diet containing his basic nutritional requirements in a form that is useful in his enironment. Several edible coatings preserve foods and give loose foods form and firmness. These coatings aid in packaging and give the food slip for easy removal from the package
Dark cloud cores and gravitational decoupling from turbulent flows
We test the hypothesis that the starless cores may be gravitationally bound
clouds supported largely by thermal pressure by comparing observed molecular
line spectra to theoretical spectra produced by a simulation that includes
hydrodynamics, radiative cooling, variable molecular abundance, and radiative
transfer in a simple one-dimensional model. The results suggest that the
starless cores can be divided into two categories: stable starless cores that
are in approximate equilibrium and will not evolve to form protostars, and
unstable pre-stellar cores that are proceeding toward gravitational collapse
and the formation of protostars. The starless cores might be formed from the
interstellar medium as objects at the lower end of the inertial cascade of
interstellar turbulence. Additionally, we identify a thermal instability in the
starless cores. Under par ticular conditions of density and mass, a core may be
unstable to expansion if the density is just above the critical density for the
collisional coupling of the gas and dust so that as the core expands the
gas-dust coupling that cools the gas is reduced and the gas warms, further
driving the expansion.Comment: Submitted to Ap
Flows, Fragmentation, and Star Formation. I. Low-mass Stars in Taurus
The remarkably filamentary spatial distribution of young stars in the Taurus
molecular cloud has significant implications for understanding low-mass star
formation in relatively quiescent conditions. The large scale and regular
spacing of the filaments suggests that small-scale turbulence is of limited
importance, which could be consistent with driving on large scales by flows
which produced the cloud. The small spatial dispersion of stars from gaseous
filaments indicates that the low-mass stars are generally born with small
velocity dispersions relative to their natal gas, of order the sound speed or
less. The spatial distribution of the stars exhibits a mean separation of about
0.25 pc, comparable to the estimated Jeans length in the densest gaseous
filaments, and is consistent with roughly uniform density along the filaments.
The efficiency of star formation in filaments is much higher than elsewhere,
with an associated higher frequency of protostars and accreting T Tauri stars.
The protostellar cores generally are aligned with the filaments, suggesting
that they are produced by gravitational fragmentation, resulting in initially
quasi-prolate cores. Given the absence of massive stars which could strongly
dominate cloud dynamics, Taurus provides important tests of theories of
dispersed low-mass star formation and numerical simulations of molecular cloud
structure and evolution.Comment: 32 pages, 9 figures: to appear in Ap
A Prediction of Brown Dwarfs in Ultracold Molecular Gas
A recent model for the stellar initial mass function (IMF), in which the
stellar masses are randomly sampled down to the thermal Jeans mass from
hierarchically structured pre-stellar clouds, predicts that regions of
ultra-cold CO gas, such as those recently found in nearby galaxies by Allen and
collaborators, should make an abundance of Brown Dwarfs with relatively few
normal stars. This result comes from the low value of the thermal Jeans mass,
considering that the hierarchical cloud model always gives the Salpeter IMF
slope above this lower mass limit. The ultracold CO clouds in the inner disk of
M31 have T~3K and pressures that are probably 10 times higher than in the solar
neighborhood. This gives a mass at the peak of the IMF equal to 0.01 Msun, well
below the Brown Dwarf limit of 0.08 Msun. Using a functional approximation to
the IMF, the ultracold clouds would have 50% of the star-like mass and 90% of
the objects below the Brown Dwarf limit. The brightest of the Brown Dwarfs in
M31 should have an apparent, extinction-corrected K-band magnitude of ~21 mag
in their pre-main sequence phase.Comment: 13 pages, 2 figures, to be published in Astrophysical Journal, Vol
522, September 10, 199
Magnetic fields at the periphery of UCHII regions from carbon recombination line observations
Several indirect evidences indicate a magnetic origin for the non-thermal
width of spectral lines observed toward molecular clouds. In this letter, I
suggest that the origin of the non-thermal width of carbon recombination lines
(CRLs) observed from photo-dissociation regions (PDRs) near ultra-compact \HII\
regions is magnetic and that the magnitude of the line width is an estimate of
the \alfven speed. The magnetic field strengths estimated based on this
suggestion compare well with those measured toward molecular clouds with
densities similar to PDR densities. I conclude that multi-frequency CRL
observations have the potential to form a new tool to determine the field
strength near star forming regions.Comment: To appear in ApJ Letter
Jamming, two-fluid behaviour and 'self-filtration' in concentrated particulate suspensions
We study the flow of model experimental hard sphere colloidal suspensions at
high volume fraction driven through a constriction by a pressure
gradient. Above a particle-size dependent limit , direct microscopic
observations demonstrate jamming and unjamming--conversion of fluid to solid
and vice versa--during flow. We show that such a jamming flow produces a
reduction in colloid concentration downstream of the constriction.
We propose that this `self-filtration' effect is the consequence of a
combination of jamming of the particulate part of the system and continuing
flow of the liquid part, i.e. the solvent, through the pores of the jammed
solid. Thus we link the concept of jamming in colloidal and granular media with
a 'two-fluid'-like picture of the flow of concentrated suspensions. Results are
also discussed in the light of Osborne Reynolds' original experiments on
dilation in granular materials.Comment: 4 pages, 3 figure
HCN versus HCO+ as dense molecular gas mass tracer in Luminous Infrared Galaxies
It has been recently argued that the HCN J=1--0 line emission may not be an
unbiased tracer of dense molecular gas (\rm n\ga 10^4 cm^{-3}) in Luminous
Infrared Galaxies (LIRGs: ) and HCO J=1--0
may constitute a better tracer instead (Graci\'a-Carpio et al. 2006), casting
doubt into earlier claims supporting the former as a good tracer of such gas
(Gao & Solomon 2004; Wu et al. 2006). In this paper new sensitive HCN J=4--3
observations of four such galaxies are presented, revealing a surprisingly wide
excitation range for their dense gas phase that may render the J=1--0
transition from either species a poor proxy of its mass. Moreover the
well-known sensitivity of the HCO abundance on the ionization degree of the
molecular gas (an important issue omitted from the ongoing discussion about the
relative merits of HCN and HCO as dense gas tracers) may severely reduce
the HCO abundance in the star-forming and highly turbulent molecular gas
found in LIRGs, while HCN remains abundant. This may result to the decreasing
HCO/HCN J=1--0 line ratio with increasing IR luminosity found in LIRGs, and
casts doubts on the HCO rather than the HCN as a good dense molecular gas
tracer. Multi-transition observations of both molecules are needed to identify
the best such tracer, its relation to ongoing star formation, and constrain
what may be a considerable range of dense gas properties in such galaxies.Comment: 16 pages, 4 figures, Accepted for publication in the Astrophysical
Journa
Stability of parallel/perpendicular domain boundaries in lamellar block copolymers under oscillatory shear
We introduce a model constitutive law for the dissipative stress tensor of
lamellar phases to account for low frequency and long wavelength flows. Given
the uniaxial symmetry of these phases, we argue that the stress tensor must be
the same as that of a nematic but with the local order parameter being the
slowly varying lamellar wavevector. This assumption leads to a dependence of
the effective dynamic viscosity on orientation of the lamellar phase. We then
consider a model configuration comprising a domain boundary separating
laterally unbounded domains of so called parallel and perpendicularly oriented
lamellae in a uniform, oscillatory, shear flow, and show that the configuration
can be hydrodynamically unstable for the constitutive law chosen. It is argued
that this instability and the secondary flows it creates can be used to infer a
possible mechanism for orientation selection in shear experiments.Comment: 26 pages, 10 figure
- …